-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
45 lines (34 loc) · 1.28 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from utils import read_data
from constants import TRAIN_FILE_PATH, TEST_FILE_PATH
from embedding import Embeddings
from cnn import CNN
import torch
import torch.nn as nn
import torch.optim as optim
from classifiers import CNNClassifier
from pipeline import Pipeline, TrainArgs
from data_loader import BertDataset, SentDataLoader
def run():
device = 'cpu'
train_data = BertDataset(TRAIN_FILE_PATH, num_entries=500)
test_data = BertDataset(TEST_FILE_PATH, num_entries=100)
batch_size = 5
train_dataloader = SentDataLoader(train_data, batch_size=batch_size)
test_dataloader = SentDataLoader(test_data, batch_size=batch_size)
embedding = Embeddings()
embed_dim = 768
kernel_size = 5
num_filters = 10
cnn_clf = CNNClassifier(embedding, embed_dim, kernel_size, num_filters)
optimizer_cls = optim.Adam
loss_cls = nn.NLLLoss
train_args = TrainArgs(epochs=5, device=device)
pipeline = Pipeline(train_dataloader, cnn_clf, loss_cls)
pipeline.train_model(optimizer_cls, train_args=train_args)
train_dataloader = SentDataLoader(train_data, batch_size=batch_size)
# print('evaluate train:')
# pipeline.evaluate(train_dataloader)
print('evaluate test:')
pipeline.evaluate(test_dataloader)
if __name__ == '__main__':
run()