forked from jwkvam/plotlywrapper
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_plots.py
executable file
·196 lines (163 loc) · 5.34 KB
/
test_plots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
"""Tests for Plotlywrapper."""
import json
from datetime import datetime, time, date
import numpy as np
from numpy import random as rng
import pandas as pd
import pytest
import plotlywrapper as pw
def json_conversion(obj):
"""Encode additional objects to JSON."""
if isinstance(obj, (np.ndarray, np.generic)):
return obj.tolist()
if isinstance(obj, pd.DatetimeIndex):
return [x.isoformat() for x in obj.to_pydatetime()]
if isinstance(obj, pd.Index):
return obj.tolist()
if isinstance(obj, pd.Series):
try:
return [x.isoformat() for x in obj.dt.to_pydatetime()]
except AttributeError:
return obj.tolist()
if isinstance(obj, (datetime, time, date)):
return obj.isoformat()
raise TypeError('Not sure how to serialize {} of type {}'.format(obj, type(obj)))
def compare_figs(d1, d2):
"""Compare charts."""
d1 = json.loads(json.dumps(d1, default=json_conversion))
d2 = json.loads(json.dumps(d2, default=json_conversion))
_compare_figs(d1, d2)
def _compare_figs(d1, d2):
assert isinstance(d1, dict)
assert isinstance(d2, dict)
for k in set(d1.keys()).union(set(d2.keys())):
if k == 'uid':
continue
assert k in d1
assert k in d2
if isinstance(d1[k], dict):
compare_figs(d1[k], d2[k])
elif isinstance(d1[k], str):
assert d1[k] == d2[k]
elif isinstance(d1[k], np.ndarray):
assert (d1[k] == d2[k]).all()
elif hasattr(d1[k], '__iter__'):
for v1, v2 in zip(d1[k], d2[k]):
if isinstance(v1, dict):
compare_figs(v1, v2)
else:
assert v1 == v2
else:
assert d1[k] == d2[k]
def test_no_args():
"""Test no args raises an error."""
with pytest.raises(AssertionError):
pw.line()
with pytest.raises(AssertionError):
pw.bar()
def test_dict():
"""Test dict accessor works."""
js = pw.line(range(3)).dict
expected = {
'layout': {},
'data': [
{
'mode': 'lines+markers',
'marker': dict(size=6),
'text': "",
'y': [0, 1, 2],
'x': [0, 1, 2],
'yaxis': 'y',
'type': 'scatter',
}
],
}
compare_figs(js, expected)
def test_one():
"""First charting test."""
x = np.arange(3)
bars = pw.bar(x=x, y=[20, 14, 23], label='new york')
bars2 = pw.bar(x=x, y=[12, 18, 29]) # , label='la')
line = pw.line(x=x, y=[3, 8, 9], label='hello', color='red', dash='dashdot', width=5)
plot = bars + bars2 + line
# print(bars.data)
plot.xlabel = 'x axis'
plot.ylabel = 'y label'
plot.stack()
plot.show(auto_open=False)
expect = {
'layout': {'barmode': 'stack', 'xaxis': {'title': 'x axis'}, 'yaxis': {'title': 'y label'}},
'data': [
{
'y': np.array([20, 14, 23]),
'x': np.array([0, 1, 2]),
'type': 'bar',
'yaxis': 'y',
'name': 'new york',
},
{'y': np.array([12, 18, 29]), 'x': np.array([0, 1, 2]), 'type': 'bar', 'yaxis': 'y'},
{
'y': np.array([3, 8, 9]),
'x': np.array([0, 1, 2]),
'line': {'color': 'red', 'width': 5, 'dash': 'dashdot'},
'type': 'scatter',
'marker': dict(size=6),
'yaxis': 'y',
'text': "",
'mode': 'lines+markers',
'name': 'hello',
},
],
}
compare_figs(plot.dict, expect)
def test_two():
"""Second charting test."""
expect = {
'layout': {'xaxis': {'title': 'x axis'}, 'yaxis': {'title': 'y label'}},
'data': [
{
'y': np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
'x': np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
'line': {'color': 'red', 'width': 5, 'dash': 'dashdot'},
'marker': dict(size=6),
'type': 'scatter',
'text': "",
'yaxis': 'y',
'mode': 'lines+markers',
'name': 'hello',
}
],
}
x = np.arange(10)
line0 = pw.line(y=x, label='hello', color='red', dash='dashdot', width=5)
line0.xlabel = 'x axis'
line0.ylabel = 'y label'
line0.show(auto_open=False)
line1 = pw.line(x, label='hello', color='red', dash='dashdot', width=5)
line1.xlabel = 'x axis'
line1.ylabel = 'y label'
line1.show(auto_open=False)
compare_figs(line0.dict, line1.dict)
compare_figs(line0.dict, expect)
def test_dataframe_lines():
"""Test dataframe lines chart."""
columns = list('abc')
x = np.arange(10)
y = rng.randn(10, 3)
df = pd.DataFrame(y, x, columns)
p1 = df.plotly.line()
p1.show(auto_open=False)
p2 = pw.line(x, y, columns)
p2.show(auto_open=False)
compare_figs(p1.dict, p2.dict)
def test_dataframe_bar():
"""Test dataframe bar chart."""
columns = list('abc')
x = np.arange(10)
y = rng.randn(10, 3)
df = pd.DataFrame(y, x, columns)
p1 = df.plotly.bar()
p1.show(auto_open=False)
p2 = pw.bar(x, y, columns)
p2.show(auto_open=False)
compare_figs(p1.dict, p2.dict)