-
Notifications
You must be signed in to change notification settings - Fork 1
/
optimizeHydro.m
355 lines (305 loc) · 11.1 KB
/
optimizeHydro.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
%-------------------------------------------------------------------------%
% function optimizeHydro_M(g, rho, T, Aw, Asc, h, w, c, I, C, n, nmax)
%
% Input: 1) Environmental: - T (wave periods)
% - Aw (wave amplitude)
% - h Water depth
% - Asc Wave scale amplitude
% Geometric properties: - w Device's width
% - c Distance from seafloor
% - I Device's moment of inertia
% - C Device's Buoyancy Torque
%
% Others: - parallel on/off
% - g gravitational constant
% - rho water density
% - n and nmax: numerical convergence
% criteria.
%
% Output: - miu (added inertia)
% - nu (radiation damping)
% - F (exciting force)
% - Capture Factor
% - Power
% - nu_ptop optimized PTO damping
%-------------------------------------------------------------------------%
% Article: Nguyen et al (2024) - Theoretical modeling of a bottom-raised
% oscillating surge wave energy converter
% structural loadings and power performances
%
% Written by: Jessica Nguyen, PhD
% University of Massachusetts Amherst
%-------------------------------------------------------------------------%
function [motion, hydro, baseF, P55, nu_pto55, Cg55] = optimizeHydro_M_v4(solver, envR, body, pto)
%% Setup for constants and other parameters (NO Modification Needed);
% Assign local variables
g = envR.g;
rho = envR.rho;
Aw = envR.Aw;
omega = envR.omega;
h = envR.depth;
if (length(Aw) == 1)
Aw = Aw*ones(length(omega),1);
end
w = body.width;
c = envR.depth - body.height;
Mass = body.Mass;
V = body.volume;
I55 = body.I55;
Bv = body.Bv55;
C55 = body.C55;
Cext = body.Cext;
Cpto = pto.stiffness;
Bpto = pto.damping;
mode = solver.mode;
n = solver.n;
nmax = solver.nmax;
% Radial Mathieu orders and parameters;
Xi = 0;
order = 1:2:nmax;
% Setup empty holders;
ncases = length(omega);
k0 = zeros(ncases, 1);
kn = zeros(ncases,n);
knTemp = zeros(ncases, 2*(n-1));
d0 = zeros(ncases,1);
f0 = zeros(ncases,1);
fn = zeros(ncases,n);
fnTemp = zeros(ncases,2*(n-1));
lambda0 = zeros(ncases,1);
lambdan = zeros(ncases,n);
lambdaTemp = zeros(ncases,2*(n-1));
mu55 = zeros(ncases, 1);
nu55 = zeros(ncases, 1);
phi = zeros(ncases, 1);
X5 = zeros(ncases, 1);
X5_H = zeros(ncases, 1);
Mr5 = zeros(ncases, 1);
nu_pto55 = zeros(ncases, 1);
mu15 = zeros(ncases, 1);
nu15 = zeros(ncases, 1);
X1 = zeros(ncases, 1);
X1_H = zeros(ncases, 1);
Fr1 = zeros(ncases, 1);
%% Calculates wavenumbers and solutions of the dispersion relation;
for i = 1:ncases
err = 1; ktemp = 1;
while (err >= 1e-12)
func = omega(i)^2 - g*ktemp*tanh(ktemp*h);
dfunc = -g*(tanh(ktemp*h) + h*ktemp*(sech(ktemp*h))^2);
ktemp_new = ktemp - func/dfunc;
err = abs(ktemp_new-ktemp);
ktemp = ktemp_new;
end
k0(i) = ktemp;
[f0(i), d0(i)] = cal_fdn(mode, k0(i), h, c, g, omega(i));
lambda0(i) = cal_lambdan(k0(i), h, c, g, omega(i));
for j = 1:2:2*(n-1)
func = @(x) (omega(i)^2 + g*x*tan(x*h));
knTemp(i,j) = -1i*fzero(func, [(j*pi/2+j*7.5e-10)/h (j+1)*pi/2/h]);
[fnTemp(i,j), ~] = cal_fdn(mode, knTemp(i,j), h, c, g, omega(i));
lambdaTemp(i,j) = cal_lambdan(knTemp(i,j), h, c, g, omega(i));
end
end
for i = 1:ncases
kn(i,:) = [k0(i) nonzeros(knTemp(i,:))'];
fn(i,:) = [f0(i) nonzeros(fnTemp(i,:))'];
lambdan(i,:) = [lambda0(i) nonzeros(lambdaTemp(i,:))'];
end
tau_n = (w*w*kn.*kn/16);
%% Calculates added inertia, damping coefficients, and exciting force;
for i = 1:ncases
miu_temp55 = 0; miu_temp15 = 0;
for j = 1:n
q = tau_n(i,j);
[~, AmBm,~] = eig_AmBm(nmax, q);
vtemp = 0; fh_temp = 0;
for k = 1:length(order)
Apm = AmBm(:,(order(k)+1)/2);
npm = Npm(nmax, Xi, q, Apm);
dhpm = dHpm(nmax, Xi, q, Apm);
vtemp = vtemp + Apm(1)*Apm(1)*npm/4./dhpm;
se = 0; sep = 0;
for ni = 1:length(Apm)
se = se + Apm(ni)*(sin((2*(ni-1)+1)*pi/2));
sep = sep + (2*(ni-1)+1)*Apm(ni);
end
fh_temp = fh_temp + se*se*sep/dhpm;
end
miu_temp55 = miu_temp55 + fn(i,j)*fn(i,j)*imag(vtemp);
miu_temp15 = miu_temp15 + lambdan(i,j)*fn(i,j)*imag(vtemp);
if (j == 1)
nu_temp = real(vtemp);
f_temp = vtemp;
fhas_temp = fh_temp;
end
end
mu55(i) = rho*w*w*pi*miu_temp55;
nu55(i) = -rho*omega(i)*w*w*f0(i)*f0(i)*pi*nu_temp;
X5(i) = (rho*omega(i)*w*w*f0(i)*d0(i)*pi*f_temp);
mu15(i) = rho*w*w*pi*miu_temp15;
nu15(i) = -rho*omega(i)*w*w*lambda0(i)*f0(i)*pi*nu_temp;
X1(i) = (rho*omega(i)*w*w*lambda0(i)*d0(i)*pi*f_temp);
% Calculates F using Haskind-Hanaoka relation;
Cg = omega(i)/2/k0(i)*(1 + 2*k0(i)*h/sinh(2*k0(i)*h));
Zo = sqrt(2)*cosh(k0(i)*h)/sqrt(h+g/omega(i)/omega(i)*(sinh(k0(i)*h))^2); %Z0(z=0);
ArX1 = 2*omega(i)*Zo*lambda0(i)/g/k0(i)*fhas_temp;
ArX5 = 2*omega(i)*Zo*f0(i)/g/k0(i)*fhas_temp;
X1_H(i) = -4/k0(i)*g*rho*Aw(i)*Cg*ArX1;
X5_H(i) = -4/k0(i)*g*rho*Aw(i)*Cg*ArX5;
end
%% Calculate reaction forces:
for i = 1:ncases
om2 = omega(i)*omega(i);
denom = -om2*(I55+mu55(i)) + ...
1i*omega(i)*(nu55(i) + Bv + Bpto) + ...
(C55 + Cpto + Cext);
phi(i) = Aw(i)*X5(i)/denom;
Fr1(i) = (-om2*mu15(i) + 1i*omega(i)*nu15(i))*phi(i) - Aw(i)*X1(i);
Mr5(i) = -(rho*V - Mass) - Aw(i)*X5(i)/1000;
end
%% Computes average power and capture factor;
for i = 1:ncases
nu_pto55(i) = sqrt((C55 - (I55 + mu55(i))*omega(i)*omega(i))^2/...
(omega(i)*omega(i)) + nu55(i));
end
Cg55 = omega'./2./k0.*(1 + 2*k0*h./sinh(2*k0*h));
P55 = abs(X5).*abs(X5)./4./(nu55 + nu_pto55);
% Cf_opt55 = P55./(1/2)/Aw/Aw./Cg55;
%% Gather outputs
motion.pitch = phi;
motion.RAO = phi./k0./Aw;
hydro.A55 = mu55;
hydro.B55 = nu55;
hydro.A15 = mu15;
hydro.B15 = nu15;
hydro.X1 = X1;
hydro.X1Haskind = X1_H;
hydro.X5 = X5;
hydro.X5Haskind = X5_H;
baseF.Fr1 = Fr1;
baseF.Mr5 = Mr5;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%--------------------------------SUB-FUNCTIONS----------------------------%
%% Calculates fn and dn;
function [f, d] = cal_fdn(mode, k, h, c, g, omega)
if (mode == 0)
if (isinf(sinh(k*h)))
syms ksym;
func = sqrt(2)*(ksym*(h-c)*sinh(ksym*h) - 2*cosh(ksym*h) + ksym*(h-c)*sinh(ksym*c) + 2*cosh(ksym*c))/...
(2*ksym*ksym*sqrt(h + g*(sinh(ksym*h))^2/omega/omega));
if (isreal(k))
f = double(limit(func,ksym,k));
else
func = sqrt(2)*(1j*ksym*(h-c)*sinh(1j*ksym*h) - 2*cosh(1j*ksym*h) + 1j*ksym*(h-c)*sinh(1j*ksym*c) + 2*cosh(1j*ksym*c))/...
(2*1j*ksym*1j*ksym*sqrt(h + g*(sinh(1j*ksym*h))^2/omega/omega));
f = double(limit(func,ksym,imag(k)));
end
else
f = sqrt(2)*(k*(h-c)*sinh(k*h) - 2*cosh(k*h) + k*(h-c)*sinh(k*c) + 2*cosh(k*c))/...
(2*k*k*sqrt(h + g*(sinh(k*h))^2/omega/omega));
end
elseif (mode == 1)
if (isinf(sinh(k*h)))
syms ksym;
func = sqrt(2)*(ksym*(h-c)*sinh(ksym*h) + cosh(ksym*c) - cosh(ksym*h))/...
(ksym*ksym*sqrt(h + g*(sinh(ksym*h))^2/omega/omega));
if (isreal(k))
f = double(limit(func,ksym,k));
else
func = sqrt(2)*(1j*ksym*(h-c)*sinh(1j*ksym*h) + cosh(1j*ksym*c) - cosh(1j*ksym*h))/...
(-ksym*ksym*sqrt(h + g*(sinh(1j*ksym*h))^2/omega/omega));
f = double(limit(func,ksym,imag(k)));
end
else
f = sqrt(2)*(k*(h-c)*sinh(k*h) + cosh(k*c) - cosh(k*h))/...
(k*k*sqrt(h + g*(sinh(k*h))^2/omega/omega));
end
else
error('Unsupported Mode!');
end
d = g*k*sqrt(h + g*(sinh(k*h))^2/omega/omega)/sqrt(2)/omega/cosh(k*h);
%d = g*(sinh(2*k*h) - sinh(2*k*c) + 2*k*(h-c))/...
% 2/sqrt(2)/omega/cosh(k*h)/sqrt(h + g*(sinh(k*h))^2/omega/omega);
%% Calculates lambda;
function lambda = cal_lambdan(k, h, c, g, omega)
if (isinf(sinh(k*h)))
syms ksym;
func = (sqrt(2)*(sinh(ksym*h)-sinh(ksym*c)))/...
(ksym*sqrt(h + g*(sinh(ksym*h))^2/omega/omega));
if (isreal(k))
lambda = double(limit(func,ksym,0));
else
func = (sqrt(2)*(sinh(1j*ksym*h)-sinh(1j*ksym*c)))/...
(1j*ksym*sqrt(h + g*(sinh(1j*ksym*h))^2/omega/omega));
lambda = double(limit(func,ksym,imag(0)));
end
else
lambda = (sqrt(2)*(sinh(k*h)-sinh(k*c)))/...
(k*sqrt(h + g*(sinh(k*h))^2/omega/omega));
end
%% Calculates coefficients in Mathieu Functions Type 4: odd-odd;
function [alpha, AmBm, order] = eig_AmBm(nmax, q)
% Constructs the LHS matrix;
nk = 0:nmax-1;
nonDiag = q*ones(1,length(nk)-1);
M = diag((2*nk+1).^2) + diag(nonDiag, -1) + diag(nonDiag, 1);
M(1,1) = M(1,1)-q;
% Finds the eigenvalues and eigenvectors;
[eigVec, eigvalues] = eig(M,'nobalance');
[alpha, num] = sort(diag(eigvalues)); % alpha is the eigenvalue vector;
eigV = eigVec(:,num); % matrix of eigenvectors
order = 2*nk+1; % odd values of order n
% Compute matrix mv of processed eigenvectors
AmBm = zeros(nmax, size(eigV,2));
for k = 1:size(eigV,2)
eigVcol = eigV(:,k).*order';
norm_eigVcol = eigV(:,k)/sum(eigVcol);
scale = sum(norm_eigVcol.*norm_eigVcol);
AmBm(:,k) = norm_eigVcol./sqrt(scale);
end
%% Evaluates angular Mathieu solutions and their derivatives for Type 4: odd-odd;;
function ceSe = ceSepm(nmax, eta, Apm)
ceSe = 0;
for j = 1:nmax
ceSe = ceSe + Apm(j)*sin((2*j-1)*eta);
end
function dceSe = dceSepm(nmax, eta, Apm)
dceSe = 0;
for j = 1:nmax
dceSe = dceSe + (2*j-1)*Apm(j)*cos((2*j-1)*eta);
end
%% Evaluates Radial Mathieu solutions and their derivatives for Type 4: odd-odd;
function npm = Npm(nmax, Xi, q, Apm)
v1 = sqrt(q)*exp(-Xi);
v2 = sqrt(q)*exp(Xi);
npm = 0;
for j = 0:nmax-1
npm = npm + (-1)^j*Apm(j+1)*(besselj(j,v1)*bessely(j+1,v2) - besselj(j+1,v1)*bessely(j,v2));
end
so = ceSepm(nmax, pi/2, Apm)*dceSepm(nmax, 0, Apm);
npm = so/sqrt(q)/Apm(1)/Apm(1)*npm;
function dnpm = dNpm(nmax, Xi, q, Apm)
v1 = sqrt(q)*exp(-Xi);
v2 = sqrt(q)*exp(Xi);
dnpm = 0;
for j = 0:nmax-1
dnpm = dnpm + (-1)^j*Apm(j+1)*((v2 + v1)*(besselj(j,v1)*bessely(j,v2) + besselj(j+1,v1)*bessely(j+1,v2))...
-(2*j+1)*(besselj(j+1,v1)*bessely(j,v2) + besselj(j,v1)*bessely(j+1,v2)));
end
so = ceSepm(nmax, pi/2, Apm)*dceSepm(nmax, 0, Apm);
dnpm = so/sqrt(q)/Apm(1)/Apm(1)*dnpm;
function djpm = dJpm(nmax, Xi, q, Apm)
v1 = sqrt(q)*exp(-Xi);
v2 = sqrt(q)*exp(Xi);
u = v2-v1;
djpm = 0;
for j = 0:nmax-1
djpm = djpm + Apm(j+1)*(besselj(2*j,u) - besselj(2*j+2,u));
end
djpm = dceSepm(nmax, 0, Apm)/Apm(1)*cosh(Xi)*djpm;
function dhpm = dHpm(nmax, Xi, q, Apm)
djpm = dJpm(nmax, Xi, q, Apm);
dnpm = dNpm(nmax, Xi, q, Apm);
dhpm = djpm + 1i*dnpm;