-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
264 lines (214 loc) · 10.9 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import glob
import math
import os
from functools import partial
import torch
from torch import nn
from torch.nn import functional as F
from torch.nn import init
from torch.optim import lr_scheduler
from criterion import RMSLoss
from data_utils import VideoAnnotation
class ConvNorm(torch.nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1,
padding=None, dilation=1, bias=True, w_init_gain='linear'):
super(ConvNorm, self).__init__()
if padding is None:
assert(kernel_size % 2 == 1)
padding = int(dilation * (kernel_size - 1) / 2)
self.conv = torch.nn.Conv1d(in_channels, out_channels,
kernel_size=kernel_size, stride=stride,
padding=padding, dilation=dilation,
bias=bias)
torch.nn.init.xavier_uniform_(
self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain))
def forward(self, signal):
conv_signal = self.conv(signal)
return conv_signal
class Encoder_MLP(nn.Module):
def __init__(self, config, config_data):
super(Encoder_MLP, self).__init__()
self.rms_discretize = config_data.rms_discretize
self.MLP = nn.ModuleList([
nn.Linear(in_features=int(config_data.video_samples),
out_features=int(config_data.rms_samples)),
nn.Linear(in_features=int(config.encoder_embedding_dim),
out_features=int(config_data.rms_num_bins) if config_data.rms_discretize else 1)
])
def forward(self, x):
for proj in self.MLP:
x = x.transpose(1, 2)
x = proj(x) # (batch, len, feature_dim) -> (batch, feature_dim, len_rms) -> (batch, len_rms, rms_num_bins)
x = F.relu(x)
if self.rms_discretize:
x = x.transpose(1, 2) # (batch, len_rms, rms_num_bins) -> (batch, rms_num_bins, len_rms)
else:
x = x.squeeze(-1) # (batch, len_rms, 1) -> (batch, len_rms)
return x
class Encoder(nn.Module):
def __init__(self, config, config_data):
super(Encoder, self).__init__()
self.rms_discretize = config_data.rms_discretize
self.onset_supervision = config_data.onset_supervision
convolutions = []
for _ in range(config.encoder_n_convolutions):
conv_input_dim = config.encoder_embedding_dim
conv_layer = nn.Sequential(
ConvNorm(conv_input_dim,
config.encoder_embedding_dim,
kernel_size=config.encoder_kernel_size, stride=1,
padding=int((config.encoder_kernel_size - 1) / 2),
dilation=1, w_init_gain='relu'),
nn.BatchNorm1d(config.encoder_embedding_dim))
convolutions.append(conv_layer)
self.convolutions = nn.ModuleList(convolutions)
self.BiLSTM = nn.LSTM(input_size=config.encoder_embedding_dim,
hidden_size=int(config.encoder_embedding_dim / 4),
num_layers=config.encoder_n_lstm,
batch_first=True, bidirectional=True)
# RMS_head
self.BiLSTM_projs = nn.ModuleList([
nn.Linear(in_features=int(config_data.video_samples),
out_features=int(config_data.rms_samples)),
nn.Linear(in_features=int(config.encoder_embedding_dim / 2),
out_features=int(config_data.rms_num_bins) if config_data.rms_discretize else 1)
])
if self.onset_supervision:
self.onset_head = nn.ModuleList([
nn.Linear(in_features=int(config_data.video_samples),
out_features=int(config_data.video_samples)),
nn.Linear(in_features=int(config.encoder_embedding_dim / 2),
out_features=1) # 1-dim: Onset or not
])
def forward(self, x):
x = x.transpose(1, 2) # x: (batch, video_frames, feature_dim) -> (batch, feature_dim, video_frames)
for conv in self.convolutions:
x = F.dropout(F.relu(conv(x)), 0.5, self.training)
x = x.transpose(1, 2) # (batch, emb_dim, video_frames) -> (batch, video_frames, emb_dim)
if type(self.BiLSTM) in [nn.LSTM, nn.GRU]:
x, _ = self.BiLSTM(x) # (batch, video_frames, emb_dim/2)
else:
x = self.BiLSTM(x) # (batch, video_frames, emb_dim/2)
rms = x
for proj in self.BiLSTM_projs:
rms = rms.transpose(1, 2)
rms = proj(rms) # (batch, video_frames, emb_dim/2) -> (batch, emb_dim/2, rms_frames) -> (batch, rms_frames, rms_num_bins)
rms = F.relu(rms)
if self.onset_supervision:
onset = x
for proj in self.onset_head:
onset = onset.transpose(1, 2)
onset = proj(onset) # (batch, len, emb_dim/2) -> (batch, emb_dim/2, rms_frames) -> (batch, rms_frames, 1)
if self.rms_discretize:
rms = rms.transpose(1, 2) # (batch, rms_frames, rms_num_bins) -> (batch, rms_num_bins, rms_frames)
else:
rms = rms.squeeze(-1) # (batch, rms_frames, 1) -> (batch, rms_frames)
if self.onset_supervision:
return rms, onset
return rms
class Video2RMS(nn.Module):
def __init__(self, config, config_data):
super(Video2RMS, self).__init__()
self.encoder = Encoder(config, config_data)
def forward(self, inputs):
encoder_output = self.encoder(inputs)
return encoder_output
def init_net(net, device, init_type='normal', init_gain=0.02):
assert (torch.cuda.is_available())
net.to(device)
net = torch.nn.DataParallel(net, range(torch.cuda.device_count()))
init_weights(net, init_type, gain=init_gain)
return net
def init_weights(net, init_type='normal', gain=0.02):
def init_func(m):
classname = m.__class__.__name__
if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
if init_type == 'normal':
init.normal_(m.weight.data, 0.0, gain)
elif init_type == 'xavier':
init.xavier_normal_(m.weight.data, gain=gain)
elif init_type == 'kaiming':
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif init_type == 'orthogonal':
init.orthogonal_(m.weight.data, gain=gain)
else:
raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
if hasattr(m, 'bias') and m.bias is not None:
init.constant_(m.bias.data, 0.0)
elif classname.find('BatchNorm2d') != -1:
init.normal_(m.weight.data, 1.0, gain)
init.constant_(m.bias.data, 0.0)
print('initialize network with %s' % init_type)
net.apply(init_func)
class Video2Sound(nn.Module):
'''
Video2Sound model for training and inference, for video2rms task.
Does not include the video feature extraction model, and RMS2Sound model.
'''
def __init__(self, config):
super(Video2Sound, self).__init__()
self.config = config
self.model_names = ['Video2RMS']
self.device = torch.device('cuda:0')
self.Video2RMS = init_net(Video2RMS(config.model, config.data), self.device)
self.RMSLoss = RMSLoss(config.train.loss, config.data.rms_discretize,
config.data.rms_mu, config.data.rms_num_bins, config.data.rms_min).to(self.device)
self.onset_supervision = config.train.onset_supervision
if config.train.onset_supervision:
self.onset_annotation_dir = config.data.onset_annotation_dir
if not os.path.isdir(self.onset_annotation_dir):
raise FileNotFoundError(f"Onset annotation directory '{self.onset_annotation_dir}' not found")
self.get_onset_label = partial(VideoAnnotation.get_onset_label,
annot_dir=self.onset_annotation_dir,
length=config.data.audio_samples,
sample_rate=config.data.video_samples//config.data.audio_samples)
self.onsetLoss = nn.BCEWithLogitsLoss()
self.onsetLoss_lambda = self.config.train.onset_loss_lambda
self.optimizers = []
self.optimizer_Video2RMS = torch.optim.Adam(self.Video2RMS.parameters(),
lr=config.train.lr, betas=(config.train.beta1, 0.999))
self.optimizers.append(self.optimizer_Video2RMS)
self.n_iter = -1
def parse_batch(self, batch):
feature, rms, video_name, video_class = batch
self.feature = feature.to(self.device).float()
if type(rms) is not torch.Tensor and len(rms) == 2:
self.gt_rms, self.gt_rms_continuous = rms
self.gt_rms = self.gt_rms.to(self.device)
self.gt_rms_continuous = self.gt_rms_continuous.to(self.device)
else:
self.gt_rms = rms.to(self.device)
self.video_name = video_name
self.video_class = video_class
if self.onset_supervision:
# call get_onset_label for each sample in batch and stack them
self.gt_onset = torch.stack([self.get_onset_label(videoname=video_id.split('_')[0], index=int(video_id.split('_')[1]))
for video_id in video_name], dim=0).unsqueeze(2).to(self.device)
def forward(self):
self.pred_rms = self.Video2RMS(self.feature)
if self.onset_supervision:
self.pred_rms, self.pred_onset = self.pred_rms
def load_checkpoint(self, checkpoint_path):
for name in self.model_names:
filepath = "{}_{}.pt".format(checkpoint_path, name)
print("Loading {}_module from checkpoint '{}'".format(name, filepath))
state_dict = torch.load(filepath, map_location='cpu')
if hasattr(state_dict, '_metadata'):
del state_dict._metadata
net = getattr(self, name)
if isinstance(net, torch.nn.DataParallel):
net = net.module
checkpoint_state = state_dict["optimizer_{}".format(name)]
net.load_state_dict(checkpoint_state)
self.epoch = state_dict["epoch"]
learning_rate = state_dict["learning_rate"]
for index in range(len(self.optimizers)):
for param_group in self.optimizers[index].param_groups:
param_group['lr'] = learning_rate
def set_requires_grad(self, nets, requires_grad=False):
if not isinstance(nets, list):
nets = [nets]
for net in nets:
if net is not None:
for param in net.parameters():
param.requires_grad = requires_grad