Skip to content

Latest commit

 

History

History
executable file
·
76 lines (53 loc) · 2.36 KB

INSTALL.md

File metadata and controls

executable file
·
76 lines (53 loc) · 2.36 KB

Installation

Requirements:

Option 1: Step-by-step installation

# first, make sure that your conda is setup properly with the right environment
# for that, check that `which conda`, `which pip` and `which python` points to the
# right path. From a clean conda env, this is what you need to do

conda create --name FCOS
conda activate FCOS

# this installs the right pip and dependencies for the fresh python
conda install ipython

# FCOS and coco api dependencies
pip install ninja yacs cython matplotlib tqdm

# follow PyTorch installation in https://pytorch.org/get-started/locally/
# we give the instructions for CUDA 9.0
conda install -c pytorch torchvision=0.2.1 cudatoolkit=9.0

export INSTALL_DIR=$PWD

# install pycocotools. Please make sure you have installed cython.
cd $INSTALL_DIR
git clone https://github.com/cocodataset/cocoapi.git
cd cocoapi/PythonAPI
python setup.py build_ext install

# install PyTorch Detection
cd $INSTALL_DIR
git clone https://github.com/tianzhi0549/FCOS.git
cd FCOS

# the following will install the lib with
# symbolic links, so that you can modify
# the files if you want and won't need to
# re-build it
python setup.py build develop --no-deps


unset INSTALL_DIR

# or if you are on macOS
# MACOSX_DEPLOYMENT_TARGET=10.9 CC=clang CXX=clang++ python setup.py build develop

Option 2: Docker Image (Requires CUDA, Linux only)

The following steps are for original maskrcnn-benchmark. Please change the repository name if needed.

Build image with defaults (CUDA=9.0, CUDNN=7, FORCE_CUDA=1):

nvidia-docker build -t maskrcnn-benchmark docker/

Build image with other CUDA and CUDNN versions:

nvidia-docker build -t maskrcnn-benchmark --build-arg CUDA=9.2 --build-arg CUDNN=7 docker/

Build image with FORCE_CUDA disabled:

nvidia-docker build -t maskrcnn-benchmark --build-arg FORCE_CUDA=0 docker/

Build and run image with built-in jupyter notebook(note that the password is used to log in jupyter notebook):

nvidia-docker build -t maskrcnn-benchmark-jupyter docker/docker-jupyter/
nvidia-docker run -td -p 8888:8888 -e PASSWORD=<password> -v <host-dir>:<container-dir> maskrcnn-benchmark-jupyter