-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
47 lines (37 loc) · 1.5 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import torch
import torch.nn as nn
import torch.nn.functional as F
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
class QNetwork(nn.Module):
"""Actor (Policy) Model."""
def __init__(self, state_size, action_size, seed, dueling_dqn=False, fc1_units=64, fc2_units=64):
"""Initialize parameters and build model.
Params
======
state_size (int): Dimension of each state
action_size (int): Dimension of each action
seed (int): Random seed
dueling_dqn (bool): Turn on or off Dueling DQN
fc1_units (int): 1st hidden layer size
fc2_units (int): 2nd hidden layer size
"""
super(QNetwork, self).__init__()
self.seed = torch.manual_seed(seed)
self.DUELING = dueling_dqn
self.fc1 = nn.Linear(state_size, fc1_units)
self.fc2 = nn.Linear(fc1_units, fc2_units)
if not self.DUELING:
self.fc3 = nn.Linear(fc2_units, action_size)
else:
self.fc3_output_v = nn.Linear(fc2_units, action_size)
self.fc3_output_a = nn.Linear(fc2_units, action_size)
def forward(self, state):
x = F.relu(self.fc1(state))
x = F.relu(self.fc2(x))
if not self.DUELING:
"""Build a network that maps state -> action values."""
x = self.fc3(x)
else:
x_a = self.fc3_output_a(x)
x = self.fc3_output_v(x) + x_a - x_a.mean(dim=1).unsqueeze(1)
return x