forked from sukhoeing/aoapc-bac2nd-keys
-
Notifications
You must be signed in to change notification settings - Fork 0
/
UVa820.cc
119 lines (107 loc) · 3.01 KB
/
UVa820.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
// UVa820, Internet Bandwidth, ACM/ICPC World Finals 2000
// 陈锋
#include <cassert>
#include <cstdio>
#include <functional>
#include <algorithm>
#include <cstring>
#include <vector>
#include <queue>
#define _for(i,a,b) for( int i=(a); i<(b); ++i)
#define _rep(i,a,b) for( int i=(a); i<=(b); ++i)
using namespace std;
struct Edge { int from, to, cap, flow; };
bool operator < (const Edge& a, const Edge& b)
{ return a.from < b.from || (a.from == b.from && a.to < b.to); }
template<int MAXSIZE, int INF>
struct Dinic {
int n, m, s, t;
vector<Edge> edges; // 边数的两倍
vector<int> G[MAXSIZE]; // 邻接表,G[i][j]表示结点i的第j条边在e数组中的序号
bool vis[MAXSIZE]; // BFS使用
int d[MAXSIZE]; // 从起点到i的距离
int cur[MAXSIZE]; // 当前弧指针
void ClearAll(int n) {
for(int i = 0; i < n; i++) G[i].clear();
edges.clear();
}
void ClearFlow() {
for(int i = 0; i < edges.size(); i++) edges[i].flow = 0;
}
void AddEdge(int from, int to, int cap) {
edges.push_back((Edge){from, to, cap, 0});
edges.push_back((Edge){to, from, 0, 0});
m = edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
}
bool BFS() {
memset(vis, 0, sizeof(vis));
queue<int> Q;
Q.push(s);
vis[s] = 1;
d[s] = 0;
while(!Q.empty()) {
int x = Q.front(); Q.pop();
for(int i = 0; i < G[x].size(); i++) {
Edge& e = edges[G[x][i]];
if(!vis[e.to] && e.cap > e.flow) {
vis[e.to] = 1;
d[e.to] = d[x] + 1;
Q.push(e.to);
}
}
}
return vis[t];
}
int DFS(int x, int a) {
if(x == t || a == 0) return a;
int flow = 0, f;
for(int& i = cur[x]; i < G[x].size(); i++) {
Edge& e = edges[G[x][i]];
if(d[x] + 1 == d[e.to] && (f = DFS(e.to, min(a, e.cap-e.flow))) > 0) {
e.flow += f;
edges[G[x][i]^1].flow -= f;
flow += f;
a -= f;
if(a == 0) break;
}
}
return flow;
}
int Maxflow(int s, int t) {
this->s = s; this->t = t;
int flow = 0;
while(BFS()) {
memset(cur, 0, sizeof(cur));
flow += DFS(s, INF);
}
return flow;
}
vector<int> Mincut() { // call this after maxflow
vector<int> ans;
for(int i = 0; i < edges.size(); i++) {
Edge& e = edges[i];
if(vis[e.from] && !vis[e.to] && e.cap > 0) ans.push_back(i);
}
return ans;
}
};
const int MAXN = 128;
Dinic<MAXN, 100000000> solver;
int main(){
int n,s,t,c, from, to, cap, kase = 1;
while(scanf("%d", &n) == 1 && n){
solver.ClearAll(n);
scanf("%d%d%d", &s, &t, &c), s--, t--;
_for(i, 0, c) {
scanf("%d%d%d", &from, &to, &cap), from--, to--;
solver.AddEdge(from, to, cap);
solver.AddEdge(to, from, cap);
}
int ans = solver.Maxflow(s, t);
printf("Network %d\nThe bandwidth is %d.\n\n", kase++, ans);
}
return 0;
}
// 14805853 820 Internet Bandwidth Accepted C++ 0.026 2015-01-15 10:13:36