forked from chrisconlan/fast-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
matrix_multiplication.py
86 lines (58 loc) · 2.01 KB
/
matrix_multiplication.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
"""
Multiply two matrices together
"""
import pandas as pd
from numba import jit
import numpy as np
from typing import List, Tuple, NewType
from utils.profiler import time_this, timed_report
from utils.profiler import ExponentialRange
ListMatrix = NewType('ListMatrix', List[List[float]])
def random_numeric_list(n: int) -> List[float]:
return list(np.random.random(n))
def random_matrices(
n: int) -> Tuple[np.ndarray, np.ndarray]:
a = np.random.random((n,n))
b = np.random.random((n,n))
return a, b
def matrix_to_nested_list(a: np.ndarray) -> ListMatrix:
return [[v for v in row] for row in a]
@time_this(lambda *args, **kwargs: len(args[0]))
def list_multiply(a: ListMatrix,
b: ListMatrix) -> ListMatrix:
"""
Multiply matrices a x b. This is O(n^3).
"""
# Assume all inner lists are same length
n, m, p = len(a), len(a[0]), len(b[0])
assert m == len(b), 'Inner dimensions do not match.'
# Create a nested list with n rows and p columns
result = [[0]*p for _ in range(n)]
# Add it all up
for i in range(n):
for j in range(p):
for k in range(m):
result[i][j] += a[i][k] * b[k][j]
return result
@time_this(lambda *args, **kwargs: len(args[0]))
def matrix_multiply(a: np.ndarray,
b: np.ndarray) -> np.ndarray:
"""
Multiply matrices a x b. This is O(n^3).
"""
return a.dot(b)
if __name__ == '__main__':
# a, b = random_matrices(10)
# a_list = matrix_to_nested_list(a)
# b_list = matrix_to_nested_list(b)
# print(list_multiply(a_list, b_list))
# print(matrix_to_nested_list(a.dot(b)))
exp_range = ExponentialRange(0, 4, 1/4)
a, b = random_matrices(exp_range.max)
with timed_report():
for i in exp_range.iterator(2):
a_list = matrix_to_nested_list(a[:i, :i])
b_list = matrix_to_nested_list(b[:i, :i])
list_multiply(a_list[:i], b_list[:i])
for i in exp_range.iterator():
matrix_multiply(a[:i, :i], b[:i, :i])