-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy patheval_reddit.py
285 lines (271 loc) · 12.8 KB
/
eval_reddit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
from comet_ml import Experiment
from sklearn.metrics import mean_squared_error
from collections import defaultdict
from math import sqrt
import torch
import torch.nn as nn
import torch.nn.functional as F
import shutil
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data import Dataset, DataLoader
from torch.nn.init import xavier_normal, xavier_uniform
from torch.distributions import Categorical
from sklearn.metrics import precision_recall_fscore_support
from sklearn.metrics import roc_auc_score, accuracy_score
from sklearn.metrics import f1_score
from sklearn import preprocessing
import numpy as np
import random
import argparse
import pickle
import json
import logging
import sys, os
import subprocess
from tqdm import tqdm
tqdm.monitor_interval = 0
from utils import *
from preprocess_movie_lens import make_dataset
import joblib
from collections import Counter
import ipdb
sys.path.append('../')
import gc
from collections import OrderedDict
from sklearn.metrics import roc_auc_score, accuracy_score
from sklearn.dummy import DummyClassifier
from model import *
from train_reddit import corrupt_reddit_batch,mask_fairDiscriminators
def optimizer(params, mode, *args, **kwargs):
if mode == 'SGD':
opt = optim.SGD(params, *args, momentum=0., **kwargs)
elif mode.startswith('nesterov'):
momentum = float(mode[len('nesterov'):])
opt = optim.SGD(params, *args, momentum=momentum, nesterov=True, **kwargs)
elif mode.lower() == 'adam':
betas = kwargs.pop('betas', (.9, .999))
opt = optim.Adam(params, *args, betas=betas, amsgrad=True,
weight_decay=1e-4, **kwargs)
elif mode.lower() == 'adam_hyp2':
betas = kwargs.pop('betas', (.5, .99))
opt = optim.Adam(params, *args, betas=betas, amsgrad=True, **kwargs)
elif mode.lower() == 'adam_hyp3':
betas = kwargs.pop('betas', (0., .99))
opt = optim.Adam(params, *args, betas=betas, amsgrad=True, **kwargs)
elif mode.lower() == 'adam_sparse':
betas = kwargs.pop('betas', (.9, .999))
opt = optim.SparseAdam(params, *args, weight_decay=1e-4, betas=betas)
elif mode.lower() == 'adam_sparse_hyp2':
betas = kwargs.pop('betas', (.5, .99))
opt = optim.SparseAdam(params, *args, betas=betas)
elif mode.lower() == 'adam_sparse_hyp3':
betas = kwargs.pop('betas', (.0, .99))
opt = optim.SparseAdam(params, *args, betas=betas)
else:
raise NotImplementedError()
return opt
def freeze_model(model):
model.eval()
for params in model.parameters():
params.requires_grad = False
def collate_fn(batch):
if isinstance(batch, np.ndarray) or (isinstance(batch, list) and isinstance(batch[0], np.ndarray)):
return torch.LongTensor(batch).contiguous()
else:
return torch.stack(batch).contiguous()
def test_dummy_reddit(args,test_dataset,modelD,net,dummy,experiment,\
epoch,strategy,multi_class=False,filter_set=None):
test_loader = DataLoader(test_dataset, num_workers=1, batch_size=2048)
correct = 0
preds_list, probs_list, labels_list = [], [],[]
sensitive_attr = net.users_sensitive
for p_batch in test_loader:
p_batch_var = Variable(p_batch).cuda()
p_batch_emb = modelD.get_embed(p_batch_var.detach(),filter_set)
y = sensitive_attr[p_batch]
preds = dummy.predict(p_batch_emb)
acc = 100.* accuracy_score(y,preds)
preds_list.append(preds)
probs_list.append(dummy.predict_proba(p_batch_emb)[:, 1])
labels_list.append(y)
AUC = roc_auc_score(labels_list[0],probs_list[0],average="micro")
f1 = f1_score(labels_list[0],preds_list[0],average="micro")
print("Test Dummy %s Accuracy is: %f AUC: %f F1: %f" %(strategy,acc,AUC,f1))
if args.do_log:
experiment.log_metric("Test Dummy "+strategy+net.attribute+" AUC",float(AUC),step=epoch)
experiment.log_metric("Test Dummy "+strategy+net.attribute+" Accuracy",float(acc),step=epoch)
experiment.log_metric("Test Dummy "+strategy+net.attribute+" F1",float(f1),step=epoch)
def test_sensitive_sr(args,test_dataset,modelD,net,experiment,\
epoch,filter_set=None):
test_loader = DataLoader(test_dataset, num_workers=1, batch_size=512)
correct = 0
preds_list, probs_list, labels_list = [], [], []
for p_batch in test_loader:
p_batch_var = Variable(p_batch).cuda()
p_batch_emb = modelD.get_embed(p_batch_var.detach(),filter_set)
y_hat, y = net.predict(p_batch_emb,p_batch_var)
preds = (y_hat > torch.Tensor([0.5]).cuda()).float() * 1
correct += preds.eq(y.view_as(preds)).sum().item()
preds_list.append(preds)
probs_list.append(y_hat)
labels_list.append(y)
cat_preds_list = torch.cat(preds_list,0).data.cpu().numpy()
cat_labels_list = torch.cat(labels_list,0).data.cpu().numpy()
cat_probs_list = torch.cat(probs_list,0).data.cpu().numpy()
AUC = roc_auc_score(cat_labels_list,cat_probs_list,average="micro")
acc = 100. * correct / len(test_dataset)
f1 = f1_score(cat_labels_list,cat_preds_list,average='micro')
print("Test %s Accuracy is: %f AUC: %f F1: %f" %(net.attribute,acc,AUC,f1))
if args.do_log:
experiment.log_metric("Test "+net.attribute+" AUC",float(AUC),step=epoch)
experiment.log_metric("Test "+net.attribute+" Accuracy",float(acc),step=epoch)
experiment.log_metric("Test "+net.attribute+" F1",float(f1),step=epoch)
def train_reddit_classifier(args,modelD,G,attribute,u_to_idx,train_dataset,test_dataset,\
experiment,filter_set=None):
modelD.eval()
net = RedditDiscriminator(G,args.embed_dim,\
attribute,u_to_idx).to(args.device)
opt = optimizer(net.parameters(),'adam', args.lr)
train_loader = DataLoader(train_dataset, num_workers=1, batch_size=3000)
train_data_itr = enumerate(train_loader)
criterion = nn.BCELoss()
for epoch in range(1,args.num_classifier_epochs + 1):
correct = 0
if epoch % 10 == 0:
print("Train %s Loss is %f Accuracy is: %f AUC: %f F1:%f"\
%(net.attribute,loss,acc,AUC,f1))
test_sensitive_sr(args,test_dataset,modelD,net,experiment,epoch,filter_set)
embs_list, labels_list = [], []
for p_batch in train_loader:
p_batch_var = Variable(p_batch).cuda()
p_batch_emb = modelD.get_embed(p_batch_var.detach(),filter_set)
opt.zero_grad()
y_hat, y = net(p_batch_emb,p_batch_var)
loss = criterion(y_hat, y)
loss.backward()
opt.step()
preds = (y_hat > torch.Tensor([0.5]).cuda()).float() * 1
correct = preds.eq(y.view_as(preds)).sum().item()
acc = 100. * correct / len(p_batch)
try:
AUC = roc_auc_score(y.data.cpu().numpy(),\
y_hat.data.cpu().numpy(),average="micro")
f1 = f1_score(y.data.cpu().numpy(), preds.data.cpu().numpy(),\
average='micro')
except:
AUC = 0
f1 = 0
if epoch == args.num_classifier_epochs:
embs_list.append(p_batch_emb)
labels_list.append(y)
if args.do_log:
experiment.log_metric("Train "+ net.attribute+"\
AUC",float(AUC),step=epoch)
cat_labels_list = torch.cat(labels_list,0).data.cpu().numpy()
cat_embs_list = torch.cat(embs_list,0).data.cpu().numpy()
''' Dummy Classifier '''
for strategy in ['stratified', 'most_frequent', 'uniform']:
dummy = DummyClassifier(strategy=strategy)
dummy.fit(cat_embs_list, cat_labels_list)
test_dummy_reddit(args,test_dataset,modelD,net,dummy,experiment,\
epoch,strategy,filter_set)
def train_compositional_reddit_classifier(args,modelD,G,sensitive_nodes,\
u_to_idx,train_dataset,test_dataset,experiment,masks,filter_set=None):
modelD.eval()
fairD_set,optimizer_fairD_set = [],[]
for sens_node in sensitive_nodes:
D = RedditDiscriminator(G,args.embed_dim,\
sens_node[0],u_to_idx).to(args.device)
optimizer_fairD = optimizer(D.parameters(),'adam',args.lr)
fairD_set.append(D)
optimizer_fairD_set.append(optimizer_fairD)
train_loader = DataLoader(train_dataset, num_workers=1, batch_size=3000)
train_data_itr = enumerate(train_loader)
criterion = nn.BCELoss()
print("Starting Training of Compositional Classifiers")
for epoch in range(1,args.num_classifier_epochs + 1):
print("Epoch %d" %(epoch))
if epoch % 10 == 0:
for i, fairD_disc in enumerate(fairD_set):
test_sensitive_sr(args,test_dataset,modelD,fairD_disc,\
experiment,epoch,[filter_set[i]])
for p_batch in train_loader:
''' Apply Masks '''
mask = random.choice(masks)
masked_fairD_set = list(mask_fairDiscriminators(fairD_set,mask))
masked_optimizer_fairD_set = list(mask_fairDiscriminators(optimizer_fairD_set,mask))
masked_filter_set = list(mask_fairDiscriminators(filter_set,mask))
p_batch_var = Variable(p_batch).cuda()
p_batch_emb = modelD.get_embed(p_batch_var.detach(),filter_set)
''' Apply Classifiers '''
for fairD_disc, fair_optim in zip(masked_fairD_set,\
masked_optimizer_fairD_set):
if fairD_disc is not None and fair_optim is not None:
fair_optim.zero_grad()
y_hat, y= fairD_disc(p_batch_emb.detach(),\
p_batch_var)
loss = criterion(y_hat, y)
loss.backward(retain_graph=False)
fair_optim.step()
# preds = (y_hat > torch.Tensor([0.5]).cuda()).float() * 1
# correct = preds.eq(y.view_as(preds)).sum().item()
# acc = 100. * correct / len(p_batch)
# AUC = roc_auc_score(y.data.cpu().numpy(),\
# y_hat.data.cpu().numpy(),average="micro")
# fair_optim.step()
# f1 = f1_score(y.data.cpu().numpy(), preds.data.cpu().numpy(),\
# average='micro')
# if epoch == args.num_classifier_epochs:
# embs_list.append(p_batch_emb)
# labels_list.append(y)
# if args.do_log:
# experiment.log_metric("Train "+ net.attribute+"\
# AUC",float(AUC),step=epoch)
# cat_labels_list = torch.cat(labels_list,0).data.cpu().numpy()
# cat_embs_list = torch.cat(embs_list,0).data.cpu().numpy()
# ''' Dummy Classifier '''
# for strategy in ['stratified', 'most_frequent', 'uniform']:
# dummy = DummyClassifier(strategy=strategy)
# dummy.fit(cat_embs_list, cat_labels_list)
# test_dummy_reddit(args,test_dataset,modelD,net,dummy,experiment,\
# epoch,strategy,filter_set)
def test_reddit_nce(dataset, epoch, test_hash, args, modelD, experiment,\
filters_set=None, subsample=1):
test_loader = DataLoader(dataset,batch_size=2048, num_workers=4, collate_fn=collate_fn)
data_itr = tqdm(enumerate(test_loader))
correct = 0
labels_list, preds_list = [], []
for idx, p_batch in data_itr:
if idx % subsample != 0:
continue
lhs, rhs = p_batch[:,0], p_batch[:,1]
nce_batch = corrupt_reddit_batch(p_batch,args.num_users,args.num_sr)
p_batch_var = Variable(p_batch).cuda()
nce_batch_var = Variable(nce_batch).cuda()
if args.filter_false_negs:
nce_falseNs = torch.FloatTensor(np.array([int(x.tobytes() in test_hash)\
for x in nce_batch.numpy()], dtype=np.float32))
p_enrgs = modelD(p_batch_var,filters=filters_set)
nce_enrgs = modelD(nce_batch_var,filters=filters_set)
''' Artificially create labels for both classes '''
if idx % 2 == 0:
preds = (p_enrgs < nce_enrgs)
labels_list.append(np.ones(len(p_batch)))
correct += preds.sum() + 1
else:
preds = (p_enrgs > nce_enrgs)
labels_list.append(np.zeros(len(p_batch)))
incorrect = preds.sum() + 1
correct += len(p_enrgs) - incorrect
preds_list.append(preds)
cat_preds_list = torch.cat(preds_list,0).data.cpu().numpy()
cat_labels_list = np.concatenate(labels_list)
acc = 100. * correct / len(cat_labels_list)
AUC = roc_auc_score(cat_labels_list,cat_preds_list,average="micro")
f1 = f1_score(cat_labels_list,cat_preds_list,average='binary')
print("Test Encoder Accuracy is: %f AUC: %f F1: %f" %(acc,AUC,f1))
if args.do_log:
experiment.log_metric("Test AUC",float(AUC),step=epoch)
experiment.log_metric("Test Accuracy",float(acc),step=epoch)
experiment.log_metric("Test Encoder F1",float(f1),step=epoch)