forked from Alfredvc/paac
-
Notifications
You must be signed in to change notification settings - Fork 7
/
gym_emulator.py
145 lines (125 loc) · 5.25 KB
/
gym_emulator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import numpy as np
import gym
import gym_ple
from scipy.misc import imresize, imsave
import random
from environment import BaseEnvironment, FramePool,ObservationPool
import logging
import sys
import json
# a changer si on veut jouer à d'autres jeux !!
IMG_SIZE_X = 84
IMG_SIZE_Y = 84
NR_IMAGES = 4
ACTION_REPEAT = 2
MAX_START_WAIT = 20
FRAMES_IN_POOL = 2
class GymEmulator(BaseEnvironment):
def __init__(self, actor_id, args):
self.game = args.game
self.gym_env = gym.make(self.game)
self.gym_env.reset()
with open("gym_game_info.json", 'r') as d :
data = json.load(d)
self.game_info = data[self.game]
self.legal_actions = [i for i in range(self.gym_env.action_space.n)]
self.screen_width = self.game_info["screen_width"]
self.screen_height = self.game_info["screen_height"]
self.random_start = args.random_start
self.single_life_episodes = args.single_life_episodes
self.call_on_new_frame = args.visualize
self.global_step = 0
# Processed historcal frames that will be fed in to the network
# (i.e., four 84x84 images)
self.rgb = args.rgb
self.depth = 1
if self.rgb : self.depth = 3
self.rgb_screen = np.zeros((self.screen_height, self.screen_width, 3), dtype=np.uint8)
self.gray_screen = np.zeros((self.screen_height, self.screen_width,1), dtype=np.uint8)
self.frame_pool = FramePool(np.empty((2, self.screen_height,self.screen_width, self.depth), dtype=np.uint8),
self.__process_frame_pool)
self.observation_pool = ObservationPool(np.zeros((IMG_SIZE_X, IMG_SIZE_Y, self.depth, NR_IMAGES), dtype=np.uint8), self.rgb)
def get_legal_actions(self):
return self.legal_actions
def rgb_to_gray(self, im):
new_im = np.zeros((self.screen_height, self.screen_width,1))
new_im[:,:,0] = 0.299 * im[:,:, 0] + 0.587 * im[:,:, 1] + 0.114 * im[:,:, 2]
return new_im
def __get_screen_image(self):
"""
Get the current frame luminance
:return: the current frame
"""
im = self.gym_env.render(mode='rgb_array')
#print('SCREEN : '+str(im.shape))
if self.rgb : self.rgb_screen = im
else : self.gray_screen = self.rgb_to_gray(im)
if self.call_on_new_frame:
self.rgb_screen = im
self.on_new_frame(self.rgb_screen)
if self.rgb : return self.rgb_screen
return self.gray_screen
def on_new_frame(self, frame):
pass
def __new_game(self):
""" Restart game """
self.gym_env.reset()
if self.random_start:
wait = random.randint(0, MAX_START_WAIT)
for _ in range(wait):
self.gym_env.step(self.legal_actions[0])
def __process_frame_pool(self, frame_pool):
""" Preprocess frame pool """
img = np.amax(frame_pool, axis=0)
if self.game_info["crop"] :
img = img[:self.game_info["crop_height"], :self.game_info["crop_width"], :]
if not self.rgb :
img = np.reshape(img, (self.game_info["crop_height"], self.game_info["crop_width"]))
else :
if not self.rgb :
img = np.reshape(img, (self.screen_height, self.screen_width))
img = imresize(img, (84, 84), interp='nearest')
img = img.astype(np.uint8)
if not self.rgb :
img = np.reshape(img, (84, 84, 1))
return img
def __action_repeat(self, a, times=ACTION_REPEAT):
""" Repeat action and grab screen into frame pool """
reward = 0
for i in range(times - FRAMES_IN_POOL):
obs, r, episode_over, info = self.gym_env.step(self.legal_actions[a])
reward += r
# Only need to add the last FRAMES_IN_POOL frames to the frame pool
for i in range(FRAMES_IN_POOL):
obs, r, episode_over, info = self.gym_env.step(self.legal_actions[a])
reward += r
img = self.__get_screen_image()
self.frame_pool.new_frame(img)
return reward, episode_over
def get_initial_state(self):
""" Get the initial state """
self.__new_game()
for step in range(NR_IMAGES):
_ , episode_over = self.__action_repeat(0)
self.observation_pool.new_observation(self.frame_pool.get_processed_frame())
if episode_over :
raise Exception('This should never happen.')
return self.observation_pool.get_pooled_observations()
def next(self, action):
""" Get the next state, reward, and game over signal """
reward, episode_over = self.__action_repeat(action)
self.observation_pool.new_observation(self.frame_pool.get_processed_frame())
observation = self.observation_pool.get_pooled_observations()
self.global_step += 1
return observation, reward, episode_over
def __is_terminal(self, episode_over):
if episode_over :
self.lives = self.gym_env.ale.lives()
if self.single_life_episodes:
return episode_over or (self.lives < self.max_lives)
else:
return over
def __is_over(self):
return self.gym_env_ale.game_over()
def get_noop(self):
return [1.0, 0.0]