forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_cpp_extensions_aot.py
354 lines (291 loc) · 13.6 KB
/
test_cpp_extensions_aot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
# Owner(s): ["module: cpp-extensions"]
from itertools import repeat
import os
import re
from typing import Union, get_args, get_origin
import unittest
import torch.testing._internal.common_utils as common
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfTorchDynamo
from torch.testing._internal.common_cuda import TEST_CUDA
import torch
import torch.backends.cudnn
import torch.utils.cpp_extension
try:
import pytest
HAS_PYTEST = True
except ImportError as e:
HAS_PYTEST = False
# TODO: Rewrite these tests so that they can be collected via pytest without
# using run_test.py
try:
if HAS_PYTEST:
cpp_extension = pytest.importorskip("torch_test_cpp_extension.cpp")
ort_extension = pytest.importorskip("torch_test_cpp_extension.ort")
rng_extension = pytest.importorskip("torch_test_cpp_extension.rng")
else:
import torch_test_cpp_extension.cpp as cpp_extension
import torch_test_cpp_extension.ort as ort_extension
import torch_test_cpp_extension.rng as rng_extension
except ImportError as e:
raise RuntimeError(
"test_cpp_extensions_aot.py cannot be invoked directly. Run "
"`python run_test.py -i test_cpp_extensions_aot_ninja` instead."
) from e
class TestCppExtensionAOT(common.TestCase):
"""Tests ahead-of-time cpp extensions
NOTE: run_test.py's test_cpp_extensions_aot_ninja target
also runs this test case, but with ninja enabled. If you are debugging
a test failure here from the CI, check the logs for which target
(test_cpp_extensions_aot_no_ninja vs test_cpp_extensions_aot_ninja)
failed.
"""
def test_extension_function(self):
x = torch.randn(4, 4)
y = torch.randn(4, 4)
z = cpp_extension.sigmoid_add(x, y)
self.assertEqual(z, x.sigmoid() + y.sigmoid())
def test_extension_module(self):
mm = cpp_extension.MatrixMultiplier(4, 8)
weights = torch.rand(8, 4, dtype=torch.double)
expected = mm.get().mm(weights)
result = mm.forward(weights)
self.assertEqual(expected, result)
def test_backward(self):
mm = cpp_extension.MatrixMultiplier(4, 8)
weights = torch.rand(8, 4, dtype=torch.double, requires_grad=True)
result = mm.forward(weights)
result.sum().backward()
tensor = mm.get()
expected_weights_grad = tensor.t().mm(torch.ones([4, 4], dtype=torch.double))
self.assertEqual(weights.grad, expected_weights_grad)
expected_tensor_grad = torch.ones([4, 4], dtype=torch.double).mm(weights.t())
self.assertEqual(tensor.grad, expected_tensor_grad)
@unittest.skipIf(not TEST_CUDA, "CUDA not found")
def test_cuda_extension(self):
import torch_test_cpp_extension.cuda as cuda_extension
x = torch.zeros(100, device="cuda", dtype=torch.float32)
y = torch.zeros(100, device="cuda", dtype=torch.float32)
z = cuda_extension.sigmoid_add(x, y).cpu()
# 2 * sigmoid(0) = 2 * 0.5 = 1
self.assertEqual(z, torch.ones_like(z))
@unittest.skipIf(not torch.backends.mps.is_available(), "MPS not found")
def test_mps_extension(self):
import torch_test_cpp_extension.mps as mps_extension
tensor_length = 100000
x = torch.randn(tensor_length, device="cpu", dtype=torch.float32)
y = torch.randn(tensor_length, device="cpu", dtype=torch.float32)
cpu_output = mps_extension.get_cpu_add_output(x, y)
mps_output = mps_extension.get_mps_add_output(x.to("mps"), y.to("mps"))
self.assertEqual(cpu_output, mps_output.to("cpu"))
@common.skipIfRocm
@unittest.skipIf(common.IS_WINDOWS, "Windows not supported")
@unittest.skipIf(not TEST_CUDA, "CUDA not found")
def test_cublas_extension(self):
from torch_test_cpp_extension import cublas_extension
x = torch.zeros(100, device="cuda", dtype=torch.float32)
z = cublas_extension.noop_cublas_function(x)
self.assertEqual(z, x)
@common.skipIfRocm
@unittest.skipIf(common.IS_WINDOWS, "Windows not supported")
@unittest.skipIf(not TEST_CUDA, "CUDA not found")
def test_cusolver_extension(self):
from torch_test_cpp_extension import cusolver_extension
x = torch.zeros(100, device="cuda", dtype=torch.float32)
z = cusolver_extension.noop_cusolver_function(x)
self.assertEqual(z, x)
@unittest.skipIf(IS_WINDOWS, "Not available on Windows")
def test_no_python_abi_suffix_sets_the_correct_library_name(self):
# For this test, run_test.py will call `python setup.py install` in the
# cpp_extensions/no_python_abi_suffix_test folder, where the
# `BuildExtension` class has a `no_python_abi_suffix` option set to
# `True`. This *should* mean that on Python 3, the produced shared
# library does not have an ABI suffix like
# "cpython-37m-x86_64-linux-gnu" before the library suffix, e.g. "so".
root = os.path.join("cpp_extensions", "no_python_abi_suffix_test", "build")
matches = [f for _, _, fs in os.walk(root) for f in fs if f.endswith("so")]
self.assertEqual(len(matches), 1, msg=str(matches))
self.assertEqual(matches[0], "no_python_abi_suffix_test.so", msg=str(matches))
def test_optional(self):
has_value = cpp_extension.function_taking_optional(torch.ones(5))
self.assertTrue(has_value)
has_value = cpp_extension.function_taking_optional(None)
self.assertFalse(has_value)
@common.skipIfRocm
@unittest.skipIf(common.IS_WINDOWS, "Windows not supported")
@unittest.skipIf(not TEST_CUDA, "CUDA not found")
@unittest.skipIf(os.getenv('USE_NINJA', '0') == '0', "cuda extension with dlink requires ninja to build")
def test_cuda_dlink_libs(self):
from torch_test_cpp_extension import cuda_dlink
a = torch.randn(8, dtype=torch.float, device='cuda')
b = torch.randn(8, dtype=torch.float, device='cuda')
ref = a + b
test = cuda_dlink.add(a, b)
self.assertEqual(test, ref)
class TestPybindTypeCasters(common.TestCase):
"""Pybind tests for ahead-of-time cpp extensions
These tests verify the types returned from cpp code using custom type
casters. By exercising pybind, we also verify that the type casters work
properly.
For each type caster in `torch/csrc/utils/pybind.h` we create a pybind
function that takes no arguments and returns the type_caster type. The
second argument to `PYBIND11_TYPE_CASTER` should be the type we expect to
receive in python, in these tests we verify this at run-time.
"""
@staticmethod
def expected_return_type(func):
"""
Our Pybind functions have a signature of the form `() -> return_type`.
"""
# Imports needed for the `eval` below.
from typing import List, Tuple # noqa: F401
return eval(re.search("-> (.*)\n", func.__doc__).group(1))
def check(self, func):
val = func()
expected = self.expected_return_type(func)
origin = get_origin(expected)
if origin is list:
self.check_list(val, expected)
elif origin is tuple:
self.check_tuple(val, expected)
else:
self.assertIsInstance(val, expected)
def check_list(self, vals, expected):
self.assertIsInstance(vals, list)
list_type = get_args(expected)[0]
for val in vals:
self.assertIsInstance(val, list_type)
def check_tuple(self, vals, expected):
self.assertIsInstance(vals, tuple)
tuple_types = get_args(expected)
if tuple_types[1] is ...:
tuple_types = repeat(tuple_types[0])
for val, tuple_type in zip(vals, tuple_types):
self.assertIsInstance(val, tuple_type)
def check_union(self, funcs):
"""Special handling for Union type casters.
A single cpp type can sometimes be cast to different types in python.
In these cases we expect to get exactly one function per python type.
"""
# Verify that all functions have the same return type.
union_type = {self.expected_return_type(f) for f in funcs}
assert len(union_type) == 1
union_type = union_type.pop()
self.assertIs(Union, get_origin(union_type))
# SymInt is inconvenient to test, so don't require it
expected_types = set(get_args(union_type)) - {torch.SymInt}
for func in funcs:
val = func()
for tp in expected_types:
if isinstance(val, tp):
expected_types.remove(tp)
break
else:
raise AssertionError(f"{val} is not an instance of {expected_types}")
self.assertFalse(expected_types, f"Missing functions for types {expected_types}")
def test_pybind_return_types(self):
functions = [
cpp_extension.get_complex,
cpp_extension.get_device,
cpp_extension.get_generator,
cpp_extension.get_intarrayref,
cpp_extension.get_memory_format,
cpp_extension.get_storage,
cpp_extension.get_symfloat,
cpp_extension.get_symintarrayref,
cpp_extension.get_tensor,
]
union_functions = [
[cpp_extension.get_symint],
]
for func in functions:
with self.subTest(msg=f"check {func.__name__}"):
self.check(func)
for funcs in union_functions:
with self.subTest(msg=f"check {[f.__name__ for f in funcs]}"):
self.check_union(funcs)
class TestORTTensor(common.TestCase):
def test_unregistered(self):
a = torch.arange(0, 10, device='cpu')
with self.assertRaisesRegex(RuntimeError, "Could not run"):
b = torch.arange(0, 10, device='ort')
def test_zeros(self):
a = torch.empty(5, 5, device='cpu')
self.assertEqual(a.device, torch.device('cpu'))
b = torch.empty(5, 5, device='ort')
self.assertEqual(b.device, torch.device('ort', 0))
self.assertEqual(ort_extension.get_test_int(), 0)
self.assertEqual(torch.get_default_dtype(), b.dtype)
c = torch.empty((5, 5), dtype=torch.int64, device='ort')
self.assertEqual(ort_extension.get_test_int(), 0)
self.assertEqual(torch.int64, c.dtype)
def test_add(self):
a = torch.empty(5, 5, device='ort', requires_grad=True)
self.assertEqual(ort_extension.get_test_int(), 0)
b = torch.empty(5, 5, device='ort')
self.assertEqual(ort_extension.get_test_int(), 0)
c = a + b
self.assertEqual(ort_extension.get_test_int(), 1)
def test_conv_backend_override(self):
# To simplify tests, we use 4d input here to avoid doing view4d( which
# needs more overrides) in _convolution.
input = torch.empty(2, 4, 10, 2, device='ort', requires_grad=True)
weight = torch.empty(6, 4, 2, 2, device='ort', requires_grad=True)
bias = torch.empty(6, device='ort')
# Make sure forward is overriden
out = torch.nn.functional.conv2d(input, weight, bias, 2, 0, 1, 1)
self.assertEqual(ort_extension.get_test_int(), 2)
self.assertEqual(out.shape[0], input.shape[0])
self.assertEqual(out.shape[1], weight.shape[0])
# Make sure backward is overriden
# Double backward is dispatched to _convolution_double_backward.
# It is not tested here as it involves more computation/overrides.
grad = torch.autograd.grad(out, input, out, create_graph=True)
self.assertEqual(ort_extension.get_test_int(), 3)
self.assertEqual(grad[0].shape, input.shape)
class TestRNGExtension(common.TestCase):
def setUp(self):
super().setUp()
@skipIfTorchDynamo("https://github.com/pytorch/torchdynamo/issues/1991")
def test_rng(self):
fourty_two = torch.full((10,), 42, dtype=torch.int64)
t = torch.empty(10, dtype=torch.int64).random_()
self.assertNotEqual(t, fourty_two)
gen = torch.Generator(device='cpu')
t = torch.empty(10, dtype=torch.int64).random_(generator=gen)
self.assertNotEqual(t, fourty_two)
self.assertEqual(rng_extension.getInstanceCount(), 0)
gen = rng_extension.createTestCPUGenerator(42)
self.assertEqual(rng_extension.getInstanceCount(), 1)
copy = gen
self.assertEqual(rng_extension.getInstanceCount(), 1)
self.assertEqual(gen, copy)
copy2 = rng_extension.identity(copy)
self.assertEqual(rng_extension.getInstanceCount(), 1)
self.assertEqual(gen, copy2)
t = torch.empty(10, dtype=torch.int64).random_(generator=gen)
self.assertEqual(rng_extension.getInstanceCount(), 1)
self.assertEqual(t, fourty_two)
del gen
self.assertEqual(rng_extension.getInstanceCount(), 1)
del copy
self.assertEqual(rng_extension.getInstanceCount(), 1)
del copy2
self.assertEqual(rng_extension.getInstanceCount(), 0)
@unittest.skipIf(not TEST_CUDA, "CUDA not found")
class TestTorchLibrary(common.TestCase):
def test_torch_library(self):
import torch_test_cpp_extension.torch_library # noqa: F401
def f(a: bool, b: bool):
return torch.ops.torch_library.logical_and(a, b)
self.assertTrue(f(True, True))
self.assertFalse(f(True, False))
self.assertFalse(f(False, True))
self.assertFalse(f(False, False))
s = torch.jit.script(f)
self.assertTrue(s(True, True))
self.assertFalse(s(True, False))
self.assertFalse(s(False, True))
self.assertFalse(s(False, False))
self.assertIn('torch_library::logical_and', str(s.graph))
if __name__ == "__main__":
common.run_tests()