forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_cuda_sanitizer.py
505 lines (411 loc) · 19.8 KB
/
test_cuda_sanitizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
# Owner(s): ["module: cuda"]
import sys
import textwrap
import traceback
from typing import List
import torch
import torch.cuda._sanitizer as csan
from torch.cuda._sanitizer import StreamId, DataPtr, EventId
from torch.testing._internal.common_utils import TestCase, run_tests, NoTest
# We cannot import TEST_CUDA from torch.testing._internal.common_cuda here,
# because if we do that, the TEST_CUDNN line from torch.testing._internal.common_cuda will be executed
# multiple times as well during the execution of this test suite, and it will
# cause CUDA OOM error on Windows.
TEST_CUDA = torch.cuda.is_available()
if not TEST_CUDA:
print("CUDA not available, skipping tests", file=sys.stderr)
TestCase = NoTest # noqa: F811
class TestArgumentHandler(TestCase):
def test_add(self):
add_func = torch.ops.aten.add.Tensor
a = torch.ones(5, 3, device="cuda")
b = torch.randn(5, 3, device="cuda")
argument_handler = csan.ArgumentHandler()
argument_handler.parse_inputs(add_func._schema, (a, b), {})
c = torch.add(a, b)
argument_handler.parse_outputs(c)
self.assertEqual({a.data_ptr(), b.data_ptr()}, argument_handler.dataptrs_read)
self.assertEqual({c.data_ptr()}, argument_handler.dataptrs_written)
def test_cat(self):
cat_func = torch.ops.aten.cat.default
a = torch.ones(2, 4, 5, device="cuda")
b = torch.zeros(2, 1, 5, device="cuda")
c = torch.rand(2, 7, 5, device="cuda")
argument_handler = csan.ArgumentHandler()
argument_handler.parse_inputs(cat_func._schema, ([a, b, c], 1), {})
d = torch.cat((a, b, c), dim=1)
argument_handler.parse_outputs(d)
self.assertEqual(
{a.data_ptr(), b.data_ptr(), c.data_ptr()}, argument_handler.dataptrs_read
)
self.assertEqual({d.data_ptr()}, argument_handler.dataptrs_written)
def test_split(self):
split_func = torch.ops.aten.split.Tensor
a = torch.arange(10, device="cuda").reshape(5, 2)
argument_handler = csan.ArgumentHandler()
argument_handler.parse_inputs(split_func._schema, (a, 2), {})
out = torch.split(a, 2)
argument_handler.parse_outputs(out)
outputs = {out[0].data_ptr(), out[1].data_ptr(), out[2].data_ptr()}
self.assertEqual({a.data_ptr()}, argument_handler.dataptrs_read)
self.assertEqual(
outputs,
argument_handler.dataptrs_written,
)
def test_inplace(self):
add_inplace_func = torch.ops.aten.add_.Tensor
a = torch.rand(4, 2, device="cuda")
argument_handler = csan.ArgumentHandler()
argument_handler.parse_inputs(add_inplace_func._schema, (a, 5), {})
a.add_(5)
argument_handler.parse_outputs(a)
self.assertEqual(set(), argument_handler.dataptrs_read)
self.assertEqual({a.data_ptr()}, argument_handler.dataptrs_written)
def test_out(self):
mul_out_func = torch.ops.aten.mul.out
a = torch.arange(8, device="cuda")
b = torch.empty(8, device="cuda")
argument_handler = csan.ArgumentHandler()
argument_handler.parse_inputs(mul_out_func._schema, (a, 3), {"out": b})
torch.mul(a, 3, out=b)
argument_handler.parse_outputs(b)
self.assertEqual({a.data_ptr()}, argument_handler.dataptrs_read)
self.assertEqual({b.data_ptr()}, argument_handler.dataptrs_written)
def test_nonzero(self):
nonzero_func = torch.ops.aten.nonzero.default
a = torch.ones(5, 3, 2, device="cuda")
argument_handler = csan.ArgumentHandler()
argument_handler.parse_inputs(nonzero_func._schema, (a,), {"as_tuple": True})
out = torch.nonzero(a, as_tuple=True)
argument_handler.parse_outputs(out)
outputs = {out[0].data_ptr(), out[1].data_ptr(), out[2].data_ptr()}
self.assertEqual({a.data_ptr()}, argument_handler.dataptrs_read)
self.assertEqual(outputs, argument_handler.dataptrs_written)
def test_tensor_names(self):
addr_func = torch.ops.aten.addr.default
vec = torch.arange(1, 4, device="cuda")
M = torch.zeros(3, 3, device="cuda")
argument_handler = csan.ArgumentHandler()
argument_handler.parse_inputs(addr_func._schema, (M, vec, vec), {})
out = torch.addr(M, vec, vec)
argument_handler.parse_outputs(out)
self.assertEqual(
argument_handler.tensor_aliases,
{
M.data_ptr(): ["self"],
vec.data_ptr(): ["vec1", "vec2"],
out.data_ptr(): [],
},
)
self.assertEqual({out.data_ptr()}, argument_handler.outputs)
def tensor_id(i: int) -> DataPtr:
return i
def stream_id(i: int) -> StreamId:
return 1000 + i
def event_id(i: int) -> EventId:
return 2000 + i
class TestEventHandler(TestCase):
def setUp(self):
self.handler = csan.EventHandler()
def kernel_launch(
self,
stream: StreamId,
read_only: List[DataPtr] = None,
read_write: List[DataPtr] = None,
) -> List[csan.SynchronizationError]:
if read_only is None:
read_only = []
if read_write is None:
read_write = []
return self.handler._handle_kernel_launch(
stream,
read_only,
read_write,
{},
"",
{k: [""] for k in read_only + read_write},
)
def assert_good_kernel_launch(
self,
stream: StreamId,
read_only: List[DataPtr] = None,
read_write: List[DataPtr] = None,
) -> None:
self.assertEqual(self.kernel_launch(stream, read_only, read_write), [])
def assert_bad_kernel_launch(
self,
number_of_errors: int,
stream: StreamId,
read_only: List[DataPtr] = None,
read_write: List[DataPtr] = None,
) -> None:
errors = self.kernel_launch(stream, read_only, read_write)
self.assertEqual(len(errors), number_of_errors)
def test_empty_kernel_launch(self):
self.assert_good_kernel_launch(stream_id(0))
def test_simple_passing(self):
self.assert_good_kernel_launch(stream_id(1), read_only=[tensor_id(1)])
self.assert_good_kernel_launch(stream_id(2), read_only=[tensor_id(1)])
def test_simple_error(self):
self.assert_good_kernel_launch(stream_id(1), read_only=[tensor_id(1)])
self.assert_bad_kernel_launch(1, stream_id(2), read_write=[tensor_id(1)])
def test_simple_sync(self):
self.assert_good_kernel_launch(stream_id(1), read_only=[tensor_id(1)])
self.handler._handle_event_record(event_id(0), stream_id(1))
self.handler._handle_event_wait(event_id(0), stream_id(2))
self.assert_good_kernel_launch(stream_id(2), read_write=[tensor_id(1)])
def test_reads_check_last_write(self):
# Tests that not only the first read operation checks if it is in conflict
# with the last write operation, but all read operations do.
self.assert_good_kernel_launch(stream_id(1), read_write=[tensor_id(1)])
self.handler._handle_event_record(event_id(0), stream_id(1))
self.handler._handle_event_wait(event_id(0), stream_id(2))
self.assert_good_kernel_launch(stream_id(2), read_only=[tensor_id(1)])
self.assert_bad_kernel_launch(1, stream_id(3), read_only=[tensor_id(1)])
def test_branch_sync(self):
# Tests that two streams can read after both waiting for a third, but they
# cannot write without further synchronization.
self.assert_good_kernel_launch(stream_id(1), read_write=[tensor_id(1)])
self.handler._handle_event_record(event_id(0), stream_id(1))
self.handler._handle_event_wait(event_id(0), stream_id(2))
self.handler._handle_event_wait(event_id(0), stream_id(3))
self.assert_good_kernel_launch(stream_id(2), read_only=[tensor_id(1)])
self.assert_good_kernel_launch(stream_id(3), read_only=[tensor_id(1)])
self.assert_bad_kernel_launch(1, stream_id(2), read_write=[tensor_id(1)])
def test_chain_sync(self):
iterations = 10
self.assert_good_kernel_launch(stream_id(0), read_only=[tensor_id(1)])
for i in range(iterations):
self.handler._handle_event_record(event_id(i), stream_id(i))
self.handler._handle_event_wait(event_id(i), stream_id(i + 1))
self.assert_good_kernel_launch(stream_id(iterations), read_write=[tensor_id(1)])
def test_expired_record(self):
self.assert_good_kernel_launch(stream_id(1), read_only=[tensor_id(1)])
self.handler._handle_event_record(event_id(0), stream_id(1))
self.assert_good_kernel_launch(stream_id(1), read_only=[tensor_id(1)])
self.handler._handle_event_wait(event_id(0), stream_id(2))
self.assert_bad_kernel_launch(1, stream_id(2), read_write=[tensor_id(1)])
def test_deleted_record(self):
for should_delete, should_create in [
(True, True),
(True, False),
(False, True),
]:
self.setUp()
with self.subTest(should_delete=should_delete, should_create=should_create):
self.assert_good_kernel_launch(stream_id(1), read_only=[tensor_id(1)])
self.handler._handle_event_record(event_id(0), stream_id(1))
if should_delete:
self.handler._handle_event_deletion(event_id(0))
if should_create:
self.handler._handle_event_creation(event_id(0))
self.handler._handle_event_wait(event_id(0), stream_id(2))
self.assert_bad_kernel_launch(
1, stream_id(2), read_write=[tensor_id(1)]
)
def test_all_reads_checked_failing(self):
iterations = 10
for i in range(1, iterations):
self.assert_good_kernel_launch(stream_id(i), read_only=[tensor_id(1)])
self.handler._handle_event_record(event_id(i), stream_id(i))
for i in range(1, iterations):
self.handler._handle_event_wait(event_id(i), stream_id(0))
self.assert_good_kernel_launch(stream_id(iterations), read_only=[tensor_id(1)])
self.handler._handle_event_record(event_id(iterations), stream_id(i))
# Does not synchronize with the last read.
self.assert_bad_kernel_launch(1, stream_id(0), read_write=[tensor_id(1)])
def test_all_reads_checked_passing(self):
iterations = 10
for i in range(1, iterations):
self.assert_good_kernel_launch(stream_id(i), read_only=[tensor_id(1)])
self.handler._handle_event_record(event_id(i), stream_id(i))
for i in range(1, iterations):
self.handler._handle_event_wait(event_id(i), stream_id(0))
self.assert_good_kernel_launch(stream_id(0), read_write=[tensor_id(1)])
def test_multiple_errors(self):
iterations = 10
self.assert_good_kernel_launch(
stream_id(0), read_write=[tensor_id(i) for i in range(iterations)]
)
self.assert_bad_kernel_launch(
iterations,
stream_id(1),
read_write=[tensor_id(i) for i in range(iterations)],
)
def test_correct_state_merging(self):
# Tests that after waiting for an event, a stream's state is indeed set
# to the pointwise maximum of its old state and the recorded state.
self.assert_good_kernel_launch(stream_id(1), read_write=[tensor_id(1)])
self.assert_good_kernel_launch(stream_id(2), read_write=[tensor_id(2)])
self.handler._handle_event_record(event_id(1), stream_id(1))
self.handler._handle_event_record(event_id(2), stream_id(2))
self.assert_good_kernel_launch(stream_id(1), read_write=[tensor_id(1)])
self.assert_good_kernel_launch(stream_id(2), read_write=[tensor_id(2)])
self.handler._handle_event_wait(event_id(1), stream_id(2))
self.handler._handle_event_wait(event_id(2), stream_id(1))
self.handler._handle_event_record(event_id(3), stream_id(2))
self.handler._handle_event_wait(event_id(3), stream_id(1))
self.assert_good_kernel_launch(
stream_id(1), read_write=[tensor_id(1), tensor_id(2)]
)
def test_record_override(self):
self.assert_good_kernel_launch(stream_id(1), read_only=[tensor_id(1)])
self.assert_good_kernel_launch(stream_id(2), read_only=[tensor_id(2)])
self.handler._handle_event_record(event_id(1), stream_id(1))
self.handler._handle_event_record(event_id(1), stream_id(2))
self.handler._handle_event_wait(event_id(1), stream_id(3))
self.assert_bad_kernel_launch(1, stream_id(3), read_write=[tensor_id(1)])
def test_multiple_wait(self):
# Tests that a wait operation can be performed multiple times on the same event
# by different streams.
self.assert_good_kernel_launch(stream_id(1), read_write=[tensor_id(1)])
self.handler._handle_event_record(event_id(1), stream_id(1))
self.handler._handle_event_wait(event_id(1), stream_id(2))
self.handler._handle_event_wait(event_id(1), stream_id(3))
self.assert_good_kernel_launch(stream_id(2), read_only=[tensor_id(1)])
self.assert_good_kernel_launch(stream_id(3), read_only=[tensor_id(1)])
def test_device_synchronize(self):
# Tests that a device synchronization does correctly cause all streams
# to synchronize with each other.
iterations = 10
for i in range(1, iterations):
self.assert_good_kernel_launch(stream_id(i), read_write=[tensor_id(i)])
self.handler._handle_device_synchronization()
self.assert_good_kernel_launch(
stream_id(0), read_write=[tensor_id(i) for i in range(1, iterations)]
)
def test_device_synchronization_expired(self):
# Tests that a device synchronization is a one-time synchronization.
self.assert_good_kernel_launch(stream_id(1), read_write=[tensor_id(1)])
self.handler._handle_device_synchronization()
self.assert_good_kernel_launch(stream_id(1), read_write=[tensor_id(1)])
self.assert_bad_kernel_launch(1, stream_id(2), read_write=[tensor_id(1)])
def test_new_stream_is_synchronized(self):
# Tests that after synchronizing operations with the host, any newly created
# stream is guaranteed to be synchronized with them as well.
self.assert_good_kernel_launch(stream_id(1), read_write=[tensor_id(1)])
self.handler._handle_device_synchronization()
self.handler._handle_stream_creation(stream_id(2))
self.assert_good_kernel_launch(stream_id(2), read_write=[tensor_id(1)])
def test_stream_synchronize(self):
# Tests that a stream synchronization does correctly cause all streams to wait
# for one specific stream, but does not synchronize all streams with each other.
self.assert_good_kernel_launch(stream_id(0), read_write=[tensor_id(1)])
self.assert_good_kernel_launch(stream_id(1), read_write=[tensor_id(2)])
self.handler._handle_stream_synchronization(stream_id(0))
self.assert_good_kernel_launch(stream_id(2), read_only=[tensor_id(1)])
self.assert_good_kernel_launch(stream_id(3), read_only=[tensor_id(1)])
self.assert_bad_kernel_launch(1, stream_id(4), read_only=[tensor_id(2)])
def test_event_synchronize(self):
# Tests that an event synchronization does correctly cause all streams to wait
# for a recorded event, but does not guarantee synchronization with the current
# state of the stream that recorded the event.
self.assert_good_kernel_launch(stream_id(1), read_write=[tensor_id(1)])
self.handler._handle_event_record(event_id(1), stream_id(1))
self.assert_good_kernel_launch(stream_id(1), read_write=[tensor_id(2)])
self.handler._handle_event_synchronization(event_id(1))
self.assert_good_kernel_launch(stream_id(2), read_write=[tensor_id(1)])
self.assert_bad_kernel_launch(1, stream_id(2), read_write=[tensor_id(2)])
class TestMessages(TestCase):
def setUp(self):
self.handler = csan.EventHandler()
def test_ensure_exists(self):
ARG = 0
for func, out in [
(
self.handler._handle_event_deletion,
f"Found Event with id: {ARG}, but no matching event "
"creation in the trace. Backfilling the trace now. "
"Perhaps the sanitizer was enabled after some torch operations?",
),
(
self.handler._handle_memory_deallocation,
f"Found tensor with pointer: {ARG}, but no matching tensor "
"allocation in the trace. Backfilling the trace now. "
"Perhaps the sanitizer was enabled after some torch operations?",
),
]:
with self.subTest(func=func, out=out):
with self.assertLogs() as captured:
func(ARG)
self.assertEqual(captured.records[0].getMessage(), out)
def test_ensure_does_not_exist(self):
ARG = 0
self.handler._handle_event_creation(ARG)
self.handler._handle_stream_creation(ARG)
for func, out in [
(
self.handler._handle_event_creation,
"Found duplicate event creation in the trace for event with "
f"id: {ARG}. Assuming the trace for event deletion wasn't caught "
"and backfilling it now. "
"Perhaps the sanitizer was enabled after some torch operations?",
),
(
self.handler._handle_stream_creation,
"Found duplicate Stream creation in the trace for Stream with "
f"id: {ARG}. PyTorch Streams are only created once, so this "
"trace entry is ignored.",
),
]:
with self.subTest(func=func, out=out):
with self.assertLogs() as captured:
func(ARG)
self.assertEqual(captured.records[0].getMessage(), out)
def test_error_message(self):
current_access = csan.Access(
type=csan.AccessType.WRITE,
seq_num=1,
stream=stream_id(1),
operator="schema",
aliases=["b"],
is_output=True,
stack_trace=traceback.StackSummary.from_list(
[("file", 0, "name", "trace a")]
),
)
previous_access = csan.Access(
type=csan.AccessType.READ,
seq_num=2,
stream=stream_id(0),
operator="schema",
aliases=["a"],
is_output=False,
stack_trace=traceback.StackSummary.from_list(
[("file", 0, "name", "trace b")]
),
)
error = csan.UnsynchronizedAccessError(
data_ptr=tensor_id(1),
allocation_stack_trace=traceback.StackSummary.from_list(
[("file", 0, "name", "alloc")]
),
current_access=current_access,
previous_access=previous_access,
)
self.assertEqual(
str(error),
textwrap.dedent(
"""\
============================
CSAN detected a possible data race on tensor with data pointer 1
Access by stream 1001 during kernel:
schema
writing to argument(s) b, and to the output
With stack trace:
File "file", line 0, in name
trace a
Previous access by stream 1000 during kernel:
schema
reading from argument(s) a
With stack trace:
File "file", line 0, in name
trace b
Tensor was allocated with stack trace:
File "file", line 0, in name
alloc
"""
),
)
if __name__ == "__main__":
run_tests()