forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_jit_autocast.py
942 lines (797 loc) · 35.6 KB
/
test_jit_autocast.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
# Owner(s): ["oncall: jit"]
import torch
from torch.cuda.amp import autocast
from typing import Optional, Tuple
import unittest
from test_jit import JitTestCase
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import run_tests, skipIfTorchDynamo
from torch.testing import FileCheck
from jit.test_models import MnistNet
TEST_BFLOAT16 = TEST_CUDA and torch.cuda.is_bf16_supported()
@skipIfTorchDynamo("Not a TorchDynamo suitable test")
class TestAutocast(JitTestCase):
def setUp(self):
# common input tensors
if TEST_CUDA:
self.a_fp16 = torch.rand((2, 2), dtype=torch.float16, device='cuda')
self.b_fp16 = torch.rand((2, 2), dtype=torch.float16, device='cuda')
self.c_fp16 = torch.rand((2, 2), dtype=torch.float16, device='cuda')
self.d_fp16 = torch.rand((2, 2), dtype=torch.float16, device='cuda')
self.a_fp32 = torch.rand((2, 2), dtype=torch.float32, device='cuda')
self.b_fp32 = torch.rand((2, 2), dtype=torch.float32, device='cuda')
self.c_fp32 = torch.rand((2, 2), dtype=torch.float32, device='cuda')
self.d_fp32 = torch.rand((2, 2), dtype=torch.float32, device='cuda')
self.old_value = torch._C._jit_set_autocast_mode(True)
super().setUp()
def tearDown(self):
torch._C._jit_set_autocast_mode(self.old_value)
super().tearDown()
@unittest.skipIf(not TEST_CUDA, "No cuda")
def test_minimal(self):
@torch.jit.script
def fn(a, b):
with autocast():
x = torch.mm(a, b)
y = torch.sum(x)
return x, y
x, y = fn(self.a_fp32, self.b_fp32)
self.assertEqual(x.dtype, torch.float16)
self.assertEqual(y.dtype, torch.float32)
@unittest.skipIf(not TEST_CUDA or not TEST_BFLOAT16, "No cuda bfloat16 support")
def test_linear_bf16(self):
@torch.jit.script
def fn(a, b):
with autocast(dtype=torch.bfloat16):
x = torch.mm(a, b)
y = torch.sum(x)
return x, y
x, y = fn(self.a_fp32, self.b_fp32)
self.assertEqual(x.dtype, torch.bfloat16)
self.assertEqual(y.dtype, torch.float32)
@unittest.skipIf(not TEST_CUDA, "No cuda")
def test_minimal_cpu(self):
@torch.jit.script
def fn(a, b):
with autocast():
return torch.mm(a, b)
result = fn(self.a_fp32.to('cpu'), self.b_fp32.to('cpu'))
self.assertEqual(result.dtype, torch.float32)
@unittest.skipIf(not TEST_CUDA, "No cuda")
def test_minimal_off(self):
@torch.jit.script
def fn(a, b):
with autocast(enabled=False):
return torch.mm(a, b)
result = fn(self.a_fp32, self.b_fp32)
self.assertEqual(result.dtype, torch.float32)
@unittest.skipIf(not TEST_CUDA, "No cuda")
def test_runtime_autocast_state(self):
@torch.jit.script
def fn(a, b, use_amp: bool):
with autocast(enabled=use_amp):
return torch.mm(a, b)
# runtime values for autocast enable argument are not supported
with self.assertRaises(RuntimeError):
fn(self.a_fp32, self.b_fp32, True)
@unittest.skipIf(not TEST_CUDA, "No cuda")
def test_runtime_autocast_state_expr(self):
@torch.jit.script
def fn(a, b):
with autocast(enabled=True if a[0][0] > 0.5 else False):
return torch.mm(a, b)
# runtime values for autocast enable argument are not supported
with self.assertRaises(RuntimeError):
fn(self.a_fp32, self.b_fp32)
@unittest.skipIf(not TEST_CUDA, "No cuda")
def test_explicit_casts(self):
@torch.jit.script
def fn(a, b, c, d):
with autocast():
e = torch.mm(a.double(), b.double()).float()
f = torch.mm(c, d).double()
g = torch.mm(c.double(), f)
return e, f, g
e, f, g = fn(self.a_fp32, self.b_fp32, self.c_fp32, self.d_fp32)
self.assertEqual(e.dtype, torch.float32)
self.assertEqual(f.dtype, torch.float64)
self.assertEqual(g.dtype, torch.float64)
# multiple uses of the same input value
@unittest.skipIf(not TEST_CUDA, "No cuda")
def test_duplicate_inputs(self):
@torch.jit.script
def fn(a, b):
with autocast():
e = torch.mm(a, a)
f = torch.mm(e, e)
return e, f
e, f = fn(self.a_fp32, self.b_fp32)
self.assertEqual(e.dtype, torch.float16)
self.assertEqual(f.dtype, torch.float16)
@unittest.skipIf(not TEST_CUDA, "No cuda")
def test_fp32_policy(self):
@torch.jit.script
def fn(a):
with autocast(enabled=True):
return torch.log(a)
result = fn(self.a_fp16)
self.assertEqual(result.dtype, torch.float32)
@unittest.skipIf(not TEST_CUDA, "No cuda")
def test_fp32_policy_with_fp64(self):
@torch.jit.script
def fn(a):
with autocast(enabled=True):
return torch.log(a)
# fp32 policy should not narrow fp64 to fp32!
result = fn(self.a_fp32.double())
self.assertEqual(result.dtype, torch.float64)
@unittest.skipIf(not TEST_CUDA, "No cuda")
def test_promote_policy(self):
@torch.jit.script
def fn(a, b, c, d):
with autocast():
e = torch.mm(a, b)
f = torch.addcmul(e, c, d, value=0.1)
return e, f
e, f = fn(self.a_fp32, self.b_fp32, self.c_fp32, self.d_fp32)
self.assertEqual(e.dtype, torch.float16)
self.assertEqual(f.dtype, torch.float32)
@unittest.skipIf(not TEST_CUDA, "No cuda")
def test_promote_policy_fp64(self):
@torch.jit.script
def fn(a, b):
with autocast(enabled=True):
return torch.addcmul(a, a, b, value=0.1)
result = fn(self.a_fp32.double(), self.b_fp32.double())
self.assertEqual(result.dtype, torch.float64)
@unittest.skipIf(not TEST_CUDA, "No cuda")
def test_fp32_set_opt_dtype_policy(self):
@torch.jit.script
def fn(a, b, c, d, dtype: Optional[int]):
with autocast(enabled=True):
x = torch.softmax(a, 0)
y = torch.softmax(b, 0, None)
z = torch.softmax(c, 0, torch.float64)
w = torch.softmax(d, 0, dtype)
return x, y, z, w
x, y, z, w = fn(self.a_fp16, self.b_fp16, self.c_fp16, self.d_fp16, None)
self.assertEqual(x.dtype, torch.float32)
self.assertEqual(y.dtype, torch.float32)
self.assertEqual(z.dtype, torch.float64)
self.assertEqual(w.dtype, torch.float16)
@unittest.skipIf(not TEST_CUDA, "No cuda")
def test_fp32_set_opt_dtype_policy_fp64(self):
@torch.jit.script
def fn(a, b, c, d, dtype: Optional[int]):
with autocast(enabled=True):
x = torch.softmax(a, 0)
y = torch.softmax(b, 0, None)
z = torch.softmax(c, 0, torch.float64)
w = torch.softmax(d, 0, dtype)
return x, y, z, w
x, y, z, w = fn(self.a_fp32.double(), self.b_fp32.double(), self.c_fp32.double(), self.d_fp32.double(), None)
self.assertEqual(x.dtype, torch.float64)
self.assertEqual(y.dtype, torch.float64)
self.assertEqual(z.dtype, torch.float64)
self.assertEqual(w.dtype, torch.float64)
@unittest.skipIf(True, "broken due to lack of type propagation")
@unittest.skipIf(not TEST_CUDA, "No cuda")
def test_control_flow(self):
@torch.jit.script
def fn(a, b, c, d):
with autocast():
if a[0][0] > 0.5:
e = torch.mm(a, b)
x = 1
else:
e = torch.mm(c, d)
x = 2
f = torch.mm(d, e) * x
return e, f
e, f = fn(self.a_fp32, self.b_fp32, self.c_fp32, self.d_fp32)
self.assertEqual(e.dtype, torch.float16)
self.assertEqual(f.dtype, torch.float16)
# this works find in regular Python, but it creates a delicate
# situation in TorchScript where the types are not consistent across
# the then/else branches
@unittest.skipIf(not TEST_CUDA, "No cuda")
def test_divergent_types(self):
@torch.jit.script
def fn(a, b, c, d):
with autocast():
if a[0][0] > 0.5:
e = torch.mm(a, b)
f = torch.mm(a, b).float()
else:
e = torch.mm(c, d).float()
f = torch.mm(a, b)
return torch.mm(e.float(), f.float())
result = fn(self.a_fp32, self.b_fp32, self.c_fp32, self.d_fp32)
self.assertEqual(result.dtype, torch.float32)
# another, more complex case of divergent types
@unittest.skipIf(not TEST_CUDA, "No cuda")
def test_divergent_autocast(self):
@torch.jit.script
def fn(a, b, c, d):
autocast_on = autocast(enabled=True)
autocast_off = autocast(enabled=False)
if a[0][0] > 0.5:
with autocast_on:
e = torch.mm(a, b)
else:
with autocast_off:
e = torch.mm(c, d)
return torch.mm(e, e)
fn(self.a_fp32, self.b_fp32, self.c_fp32, self.d_fp32)
@unittest.skipIf(not TEST_CUDA, "No cuda")
def test_conditional_autocast(self):
@torch.jit.script
def fn(a, b):
autocast_on = autocast(enabled=True)
autocast_off = autocast(enabled=False)
with autocast_on if a[0][0] > 0.5 else autocast_off:
return torch.mm(a, b)
# conditional autocast expressions are not supported
with self.assertRaises(RuntimeError):
fn(self.a_fp32, self.b_fp32)
@unittest.skipIf(not TEST_CUDA, "No cuda")
def test_nested_autocast(self):
@torch.jit.script
def fn(a, b, c, d):
with autocast(enabled=False):
e = torch.mm(a, b)
with autocast(enabled=True):
f = torch.mm(e, c)
with autocast(enabled=False):
g = torch.mm(e, d)
return e, f, g
e, f, g = fn(self.a_fp32, self.b_fp32, self.c_fp32, self.d_fp32)
self.assertEqual(e.dtype, torch.float32)
self.assertEqual(f.dtype, torch.float16)
self.assertEqual(g.dtype, torch.float32)
@unittest.skipIf(not TEST_CUDA, "No cuda")
def test_implicitly_nested_autocast(self):
@torch.jit.script
def fn(a, b):
with autocast(enabled=False), autocast(enabled=True):
return torch.mm(a, b)
result = fn(self.a_fp32, self.b_fp32)
self.assertEqual(result.dtype, torch.float16)
@unittest.skipIf(not TEST_CUDA, "No cuda")
def test_reused_autocast(self):
@torch.jit.script
def fn(a, b, c, d):
autocast_instance = autocast(enabled=True)
with autocast_instance:
e = torch.mm(a, b)
with autocast_instance:
e = torch.mm(c, d)
f = torch.mm(d, e)
g = torch.mm(e, f)
return e, f, g
e, f, g = fn(self.a_fp32, self.b_fp32, self.c_fp32, self.d_fp32)
self.assertEqual(e.dtype, torch.float16)
self.assertEqual(f.dtype, torch.float16)
self.assertEqual(g.dtype, torch.float16)
# TODO: fix and enable this test?
# (we could technically fix this, but is it really worth it?)
@unittest.skipIf(True, "unsuported autocast syntax")
def test_reused_autocast_expr(self):
@torch.jit.script
def fn(a, b, c, d):
with autocast(enabled=True) as autocast_instance:
e = torch.mm(a, b)
with autocast_instance:
e = torch.mm(c, d)
f = torch.mm(d, e)
g = torch.mm(e, f)
return e, f, g
e, f, g = fn(self.a_fp32, self.b_fp32, self.c_fp32, self.d_fp32)
self.assertEqual(e.dtype, torch.float16)
self.assertEqual(f.dtype, torch.float16)
self.assertEqual(g.dtype, torch.float16)
@unittest.skipIf(not TEST_CUDA, "No cuda")
def test_callees(self):
def helper(a, b):
return torch.mm(a, b)
@torch.jit.script
def fn(a, b):
with autocast(enabled=True):
tmp = helper(a, b)
tmp = helper(tmp, tmp)
tmp = helper(tmp, tmp)
tmp = helper(tmp, tmp)
return helper(tmp, b)
result = fn(self.a_fp32, self.b_fp32)
self.assertEqual(result.dtype, torch.float16)
@unittest.skipIf(not TEST_CUDA, "No cuda")
def test_callees_with_autocast_on(self):
def helper(a, b):
with autocast(enabled=True):
return torch.mm(a, b)
@torch.jit.script
def fn(a, b):
with autocast(enabled=False):
return helper(a, b)
result = fn(self.a_fp32, self.b_fp32)
self.assertEqual(result.dtype, torch.float16)
@unittest.skipIf(not TEST_CUDA, "No cuda")
def test_callees_with_autocast_off(self):
def helper(a, b):
with autocast(enabled=False):
return torch.mm(a, b)
@torch.jit.script
def fn(a, b):
with autocast(enabled=True):
return helper(a, b)
result = fn(self.a_fp32, self.b_fp32)
self.assertEqual(result.dtype, torch.float32)
# scripting inside eager autocast
@unittest.skipIf(not TEST_CUDA, "No cuda")
def test_eager_and_script(self):
@torch.jit.script
def fn(a, b):
return torch.mm(a, b)
for i in range(8):
use_autocast = (i % 2 == 0)
expected_dtype = torch.float16 if use_autocast else torch.float32
with autocast(enabled=use_autocast):
result = fn(self.a_fp32, self.b_fp32)
self.assertEqual(result.dtype, expected_dtype)
# traced inside scripting
@unittest.skipIf(not TEST_CUDA, "No cuda")
def test_script_and_tracing(self):
def helper(a, b):
return torch.mm(a, b)
traced = torch.jit.trace(helper, (self.a_fp32, self.a_fp32))
@torch.jit.script
def fn(a, b):
with autocast(enabled=True):
return traced(a, b)
result = fn(self.a_fp32, self.b_fp32)
self.assertEqual(result.dtype, torch.float16)
# traced with autocast inside scripting
@unittest.skipIf(True, "autocast(False) is ignored inside traced functions")
@unittest.skipIf(not TEST_CUDA, "No cuda")
def test_script_and_tracing_with_autocast(self):
def helper(a, b):
with autocast(enabled=False):
return torch.mm(a, b) * 2.0
traced = torch.jit.trace(helper, (self.a_fp32, self.a_fp32))
@torch.jit.script
def fn(a, b):
with autocast(enabled=True):
return traced(a, b)
result = fn(self.a_fp32, self.b_fp32)
self.assertEqual(result.dtype, torch.float32)
# scripted called from traced
@unittest.skipIf(not TEST_CUDA, "No cuda")
def test_tracing_and_script(self):
@torch.jit.script
def fn(a, b):
with autocast():
return torch.mm(a, b)
def traced(a, b):
return fn(a, b)
traced = torch.jit.trace(traced, (self.a_fp32, self.b_fp32))
result = traced(self.a_fp32, self.b_fp32)
self.assertEqual(result.dtype, torch.float16)
# scripted called from traced with autocast
@unittest.skipIf(True, "scripted called from traced TorchScript is not yet working")
@unittest.skipIf(not TEST_CUDA, "No cuda")
def test_tracing_with_autocast_and_script(self):
@torch.jit.script
def fn(a, b):
return torch.mm(a, b)
def traced(a, b):
with autocast(enabled=True):
return fn(a, b)
traced = torch.jit.trace(traced, (self.a_fp32, self.b_fp32))
result = traced(self.a_fp32, self.b_fp32)
self.assertEqual(result.dtype, torch.float16)
@unittest.skipIf(not TEST_CUDA, "No cuda")
def test_script_module(self):
class TestModule(torch.nn.Module):
def __init__(self, N, M):
super().__init__()
self.weight = torch.nn.Parameter(torch.rand((N, M), dtype=torch.float32))
self.linear = torch.nn.Linear(N, M).float()
def forward(self, input):
with autocast(enabled=True):
output = self.weight.mv(input)
output = self.linear(output)
return output
scripted_module = torch.jit.script(TestModule(2, 3)).cuda()
input = torch.rand(3, dtype=torch.float32, device='cuda')
result = scripted_module(input)
self.assertEqual(result.dtype, torch.float16)
@unittest.skipIf(True, "autocast decorators not supported")
@unittest.skipIf(not TEST_CUDA, "No cuda")
def test_autocast_decorator(self):
@torch.jit.script
@autocast(enabled=True)
def fn(a, b):
return torch.mm(a, b)
result = fn(self.a_fp32, self.b_fp32)
self.assertEqual(result.dtype, torch.float16)
# this is equivalent to running scripted functions inside autocast)
# (see also test_eager_and_script)
@unittest.skipIf(not TEST_CUDA, "No cuda")
def test_autocast_decorator_outside_jit(self):
@autocast(enabled=True)
@torch.jit.script
def fn(a, b):
return torch.mm(a, b)
result = fn(self.a_fp32, self.b_fp32)
self.assertEqual(result.dtype, torch.float16)
@unittest.skipIf(not TEST_CUDA, "No cuda")
def test_inplace(self):
@torch.jit.script
def fn(a, b, c):
with autocast(enabled=True):
x = torch.addmm(a, b, c)
y = torch.addmm(a, b, c, out=a)
z = a.addmm_(b, c)
return x, y, z
x, y, z = fn(self.a_fp32, self.b_fp32, self.c_fp32)
self.assertEqual(x.dtype, torch.float16)
self.assertEqual(y.dtype, torch.float32)
self.assertEqual(z.dtype, torch.float32)
def _test_autocast(self, func, cast_op, *args):
jit_func = torch.jit.script(func)
o = func(*args)
jit_o = jit_func(*args)
if cast_op is not None:
FileCheck().check(cast_op).run(jit_func.graph_for(*args))
for o0, o1 in zip(o, jit_o):
self.assertEqual(o0.dtype, o1.dtype)
@unittest.skipIf(not TEST_CUDA, "No cuda")
def test_autocast_api(self):
def t_autocast_cpu(x, y):
with torch.autocast("cpu", dtype=torch.bfloat16):
return torch.mm(x, y)
def t_autocast_cuda(x, y):
with torch.autocast("cuda", dtype=torch.half):
return torch.mm(x, y)
def t_cuda_amp_autocast(x, y):
with torch.cuda.amp.autocast():
return torch.mm(x, y)
def t_cpu_amp_autocast(x, y):
with torch.cpu.amp.autocast():
return torch.mm(x, y)
x = torch.randn(5, 5, device="cuda", dtype=torch.float32)
y = torch.randn(5, 5, device="cuda", dtype=torch.float32)
self._test_autocast(t_autocast_cpu, "aten::_autocast_to_reduced_precision", x, y)
self._test_autocast(t_autocast_cuda, "aten::_autocast_to_reduced_precision", x, y)
self._test_autocast(t_cuda_amp_autocast, "aten::_autocast_to_reduced_precision", x, y)
self._test_autocast(t_cpu_amp_autocast, "aten::_autocast_to_reduced_precision", x, y)
@unittest.skipIf(True, "we need to provide dtype argument at this moment")
@unittest.skipIf(not TEST_CUDA, "No cuda")
def test_autocast_api_not_supported(self):
def t_autocast_cpu(x, y):
# no dtype provided is not currently supported
with torch.autocast("cpu"):
return torch.mm(x, y)
def t_autocast_cuda(x, y):
# no dtype provided is not currently supported
with torch.autocast("cuda"):
return torch.mm(x, y)
x = torch.randn(5, 5, device="cuda", dtype=torch.float32)
y = torch.randn(5, 5, device="cuda", dtype=torch.float32)
self._test_autocast(t_autocast_cpu, "aten::_autocast_to_reduced_precision", x, y)
self._test_autocast(t_autocast_cuda, "aten::_autocast_to_reduced_precision", x, y)
@unittest.skipIf(not TEST_CUDA, "No cuda")
def test_autocast_mixed_dtypes(self):
def t(cpu0, cpu1, cuda0, cuda1):
with torch.autocast("cpu", torch.bfloat16):
with torch.autocast("cuda", torch.float16):
cpu_o = torch.mm(cpu0, cpu1)
cuda_o = torch.mm(cuda0, cuda1)
return cpu_o, cuda_o
jit_t = torch.jit.script(t)
cpu0 = torch.randn(5, 5, device="cpu", dtype=torch.float32)
cpu1 = torch.randn(5, 5, device="cpu", dtype=torch.float32)
cuda0 = torch.randn(5, 5, device="cuda", dtype=torch.float32)
cuda1 = torch.randn(5, 5, device="cuda", dtype=torch.float32)
self._test_autocast(t, "aten::_autocast_to_reduced_precision", cpu0, cpu1, cuda0, cuda1)
@unittest.skipIf(not TEST_CUDA, "No cuda")
def test_jit_executor_under_autocast(self):
def t(cpu0, cpu1, cuda0, cuda1):
cpu_o = torch.mm(cpu0, cpu1)
cuda_o = torch.mm(cuda0, cuda1)
return cpu_o, cuda_o
jit_t = torch.jit.script(t)
cpu0 = torch.randn(5, 5, device="cpu", dtype=torch.float32)
cpu1 = torch.randn(5, 5, device="cpu", dtype=torch.float32)
cuda0 = torch.randn(5, 5, device="cuda", dtype=torch.float32)
cuda1 = torch.randn(5, 5, device="cuda", dtype=torch.float32)
with torch.autocast("cpu", torch.bfloat16):
with torch.autocast("cuda", torch.float16):
self._test_autocast(t, "aten::_autocast_to_reduced_precision", cpu0, cpu1, cuda0, cuda1)
with torch.autocast("cpu", torch.bfloat16):
self._test_autocast(t, "aten::_autocast_to_reduced_precision", cpu0, cpu1, cuda0, cuda1)
with torch.autocast("cuda", torch.float16):
self._test_autocast(t, "aten::_autocast_to_reduced_precision", cpu0, cpu1, cuda0, cuda1)
# no cast op should be observed when executing outside autocast context
self._test_autocast(t, None, cpu0, cpu1, cuda0, cuda1)
@unittest.skipIf(not TEST_CUDA, "No cuda")
def test_autocast_autodiff(self):
def t(t0, t1):
o = torch.mm(t0, t1)
return o.relu()
jit_t = torch.jit.script(t)
t0 = torch.randn(5, 5, device="cuda", dtype=torch.float32).requires_grad_()
t1 = torch.randn(5, 5, device="cuda", dtype=torch.float32).requires_grad_()
# run optimization
for i in range(5):
with torch.autocast("cuda", torch.float16):
jit_o = jit_t(t0, t1)
jit_o.sum().backward()
t0.grad = None
t1.grad = None
ref_t0 = t0.detach().requires_grad_()
ref_t1 = t1.detach().requires_grad_()
with torch.autocast("cuda", torch.float16):
o = t(ref_t0, ref_t1)
jit_o = jit_t(t0, t1)
jit_o.sum().backward()
o.sum().backward()
self.assertEqual(o, jit_o)
self.assertEqual(t0.grad, ref_t0.grad)
self.assertEqual(t1.grad, ref_t1.grad)
self.assertEqual(o.dtype, jit_o.dtype)
self.assertEqual(t0.grad.dtype, ref_t0.grad.dtype)
self.assertEqual(t1.grad.dtype, ref_t1.grad.dtype)
@unittest.skipIf(not TEST_CUDA, "No cuda")
def test_jit_call_method_under_autocast(self):
@torch.jit.interface
class Iface(torch.nn.Module):
def forward(self, x, y) -> torch.Tensor:
pass
class Impl(Iface):
def forward(self, x, y):
return torch.mm(x, y)
class Thing1(torch.nn.Module):
impl: Iface
def forward(self, x, y):
with torch.cuda.amp.autocast():
a = torch.mm(x, y)
b = self.impl.forward(a, x)
return b
scripted_impl = torch.jit.script(Impl())
thing1 = Thing1()
thing1.impl = scripted_impl
scripted_thing1 = torch.jit.script(thing1)
x = torch.rand([2, 2])
y = torch.rand([2, 2])
# make sure this doesn't throw an error
with torch.cuda.amp.autocast():
ans = scripted_thing1.forward(x, y)
self.assertEqual(torch.mm(torch.mm(x, y), x), ans)
# sanity check: this isn't supported currently when global autocasting
# isn't enabled
self.assertRaises(RuntimeError, lambda: scripted_thing1.forward(x, y))
@unittest.skipIf(not TEST_CUDA, "No cuda")
def test_jit_freeze_autocast_basic(self):
class TestModule(torch.nn.Module):
def forward(self, x, y):
with torch.cuda.amp.autocast():
return torch.mm(x, y)
x = torch.rand((3, 4), dtype=torch.float).cuda()
y = torch.rand((4, 5), dtype=torch.float).cuda()
mod = TestModule().eval()
# sanity check
self._test_autocast(mod, "aten::_autocast_to_reduced_precision", x, y)
frozen_mod = torch.jit.freeze(torch.jit.script(mod).eval())
FileCheck().check_count("aten::_autocast_to_reduced_precision", 2, True).run(frozen_mod.graph)
# make sure that the runtime pass doesn't duplicate autocast nodes
frozen_mod(x, y)
optimized_graph = frozen_mod.graph_for(x, y)
FileCheck().check_count("aten::_autocast_to_reduced_precision", 2, True).run(optimized_graph)
@unittest.skipIf(not TEST_CUDA, "No cuda")
def test_jit_freeze_autocast_constants(self):
class TestModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.x = torch.rand((3, 4), dtype=torch.float).cuda()
def forward(self, y):
with torch.cuda.amp.autocast():
return torch.mm(self.x, y)
y = torch.rand((4, 5), dtype=torch.float).cuda()
mod = TestModule().eval()
frozen_mod = torch.jit.freeze(torch.jit.script(mod).eval())
# freezing should pre-cast the constant self.x to remove one autocast call
FileCheck().check_count("aten::_autocast_to_reduced_precision", 1, True).run(frozen_mod.graph)
# the runtime autocasting pass will re-insert the second autocast call,
# but constant propagation will merge it with the constant that it's casting.
frozen_mod(y)
optimized_graph = frozen_mod.graph_for(y)
FileCheck().check_count("aten::_autocast_to_reduced_precision", 1, True).run(optimized_graph)
@unittest.skipIf(TEST_CUDA, "CPU-only test")
def test_jit_autocast_softmax_cpu(self):
def fn(x):
with torch.cpu.amp.autocast():
return torch.nn.functional.softmax(x, dim=0)
fn_s = torch.jit.script(fn)
x = torch.rand((2, 2), dtype=torch.bfloat16)
fn_s(x)
y = fn_s(x)
self.assertTrue(y.dtype == torch.bfloat16)
@unittest.skipIf(not TEST_CUDA, "No cuda")
def test_jit_autocast_softmax_gpu(self):
def fn(x):
with torch.cuda.amp.autocast():
return torch.nn.functional.softmax(x, dim=0)
fn_s = torch.jit.script(fn)
x = torch.rand((2, 2), dtype=torch.half).cuda()
fn_s(x)
y = fn_s(x)
self.assertTrue(y.dtype == torch.float)
def test_ignore_amp(self):
@torch.jit.script
def foo(x):
return torch.mm(x, x)
inp = torch.rand([10, 10], dtype=torch.float)
foo._set_ignore_amp(True)
with torch.cpu.amp.autocast():
foo(inp)
foo(inp)
g = torch.jit.last_executed_optimized_graph()
FileCheck().check_not("_autocast_to_reduced").run(g)
class convbn(torch.nn.Module):
def __init__(self, bias_enabled=True):
super().__init__()
self.conv = torch.nn.Conv2d(3, 64, 7, stride=2, bias=bias_enabled)
self.bn = torch.nn.BatchNorm2d(64)
def forward(self, x):
return self.bn(self.conv(x))
@skipIfTorchDynamo("Not a TorchDynamo suitable test")
class TestJitTraceAutocast(JitTestCase):
def setUp(self):
super().setUp()
self.previous_default_dtype = torch.get_default_dtype()
torch.set_default_dtype(torch.float32)
self.models = [MnistNet(),
convbn(bias_enabled=True),
convbn(bias_enabled=False)]
self.inputs = [torch.randn(5, 1, 28, 28, device='cpu'),
torch.randn(32, 3, 224, 224, device='cpu'),
torch.randn(32, 3, 224, 224, device='cpu')]
self.previous_jit_autocast_pass = torch._C._jit_set_autocast_mode(False)
def tearDown(self):
torch._C._jit_set_autocast_mode(self.previous_jit_autocast_pass)
torch.set_default_dtype(self.previous_default_dtype)
super().tearDown()
def test_generate_autocast_jit_trace_model(self):
def test_generate_autocast_jit_trace_model(model, x):
model.eval()
with torch.cpu.amp.autocast(cache_enabled=False), torch.no_grad():
traced_model = torch.jit.trace(model, x)
traced_model = torch.jit.freeze(traced_model)
for i in range(self.models.__len__()):
test_generate_autocast_jit_trace_model(self.models[i], self.inputs[i])
def test_nchw_autocast_jit_trace_model(self):
def test_nchw_autocast_jit_trace_model(model, x):
model.eval()
with torch.cpu.amp.autocast(cache_enabled=False), torch.no_grad():
traced_model = torch.jit.trace(model, x)
traced_model = torch.jit.freeze(traced_model)
with torch.no_grad():
y = traced_model(x.clone())
with torch.cpu.amp.autocast(), torch.no_grad():
y2 = model(x.clone())
torch.testing.assert_close(y.double(), y2.double(), rtol=1e-03, atol=1e-03)
for i in range(self.models.__len__()):
test_nchw_autocast_jit_trace_model(self.models[i], self.inputs[i])
def test_nhwc_autocast_jit_trace_model(self):
def test_nhwc_autocast_jit_trace_model(model, x):
model = model.to(memory_format=torch.channels_last)
model.eval()
with torch.cpu.amp.autocast(cache_enabled=False), torch.no_grad():
traced_model = torch.jit.trace(model, x.to(memory_format=torch.channels_last))
traced_model = torch.jit.freeze(traced_model)
with torch.no_grad():
y = traced_model(x.clone().to(memory_format=torch.channels_last))
with torch.cpu.amp.autocast(), torch.no_grad():
y2 = model(x.clone().to(memory_format=torch.channels_last))
torch.testing.assert_close(y.double(), y2.double(), rtol=1e-03, atol=1e-03)
for i in range(self.models.__len__()):
if self.inputs[i].size().__len__() == 5:
# NHWC 3D case not support yet
continue
test_nhwc_autocast_jit_trace_model(self.models[i], self.inputs[i])
def test_cat_promote(self):
class TestModel(torch.nn.Module):
def forward(self, a, b):
return torch.cat([a, b], 0)
with torch.jit.fuser("none"):
# In this testcase, we will check whether cat has done the promotion in AMP with mixed dtype inputs.
# To avoid the fusion group from TE, we will disable the fuser here.
for jit_freeze_or_not in [False, True]:
test_model = TestModel().eval()
with torch.cpu.amp.autocast(cache_enabled=False, dtype=torch.bfloat16), torch.no_grad():
a = torch.rand(24, 128, 128)
b = torch.rand(24, 128, 128, dtype=torch.bfloat16)
c = test_model(a, b)
traced = torch.jit.trace(test_model, (a, b))
if jit_freeze_or_not:
traced = torch.jit.freeze(traced)
for _ in range(3):
c2 = traced(a, b)
self.assertTrue(c.dtype, torch.float32)
self.assertTrue(c2.dtype, torch.float32)
traced_graph = traced.graph_for(a, b)
self.assertTrue(any(n.kind() == "aten::to" for n in traced_graph.nodes()))
def test_script_autocast_cpu(self):
def fn(x):
if torch.is_autocast_cpu_enabled():
return x.relu()
else:
return x.sin()
fn_s = torch.jit.script(fn)
x = torch.rand((4, 4)) - 0.5
with torch.cpu.amp.autocast():
self.assertEqual(fn_s(x), fn(x))
with torch.cpu.amp.autocast(enabled=True):
self.assertEqual(fn_s(x), fn(x))
self.assertTrue(any("is_autocast_cpu_enabled" in x.kind() for x in fn_s.graph.nodes()))
@unittest.skipIf(not TEST_CUDA, "No cuda")
def test_script_autocast_cuda(self):
def fn(x):
if torch.is_autocast_enabled():
return x.relu()
else:
return x.sin()
fn_s = torch.jit.script(fn)
x = torch.rand((4, 4)) - 0.5
with torch.cpu.amp.autocast():
self.assertEqual(fn_s(x), fn(x))
with torch.cuda.amp.autocast(enabled=True):
self.assertEqual(fn_s(x), fn(x))
self.assertTrue(any("is_autocast_enabled" in x.kind() for x in fn_s.graph.nodes()))
def test_scripted_aliasing(self):
# torch.is_autocast_enabled should not be able to move inside of the autocast context.
def fn(x):
if torch.is_autocast_enabled():
y = True
else:
y = False
with torch.cuda.amp.autocast(enabled=True):
z = x.relu()
return y, z
fn_s = torch.jit.script(fn)
graph = fn_s.graph
aliasdb = graph.alias_db()
is_enabled_nodes = graph.findAllNodes("aten::is_autocast_enabled")
enter_nodes = graph.findAllNodes("prim::Enter")
self.assertEqual(len(is_enabled_nodes), 1)
self.assertEqual(len(enter_nodes), 1)
self.assertFalse(aliasdb.move_after_topologically_valid(is_enabled_nodes[0], enter_nodes[0]))
def test_script_autocast_enable_and_check(self):
def fn(x, y) -> Tuple[torch.Tensor, bool, torch.Tensor, bool, torch.Tensor, bool]:
b1 = torch.is_autocast_cpu_enabled()
v1 = torch.mm(x, y)
with torch.cpu.amp.autocast(enabled=True):
b2 = torch.is_autocast_cpu_enabled()
v2 = torch.mm(x, y)
with torch.cpu.amp.autocast(enabled=False):
b3 = torch.is_autocast_cpu_enabled()
v3 = torch.mm(x, y)
return (v1, b1, v2, b2, v3, b3)
# bx = is_autocast_cpu_enabled() result should be False iff (vx = mm(x, y)).dtype is float
def check_fn_results(arr):
[v1, b1, v2, b2, v3, b3] = arr
self.assertTrue((v1.dtype == torch.float) != b1)
self.assertTrue((v2.dtype == torch.float) != b2)
self.assertTrue((v3.dtype == torch.float) != b3)
x = torch.rand((2, 2), dtype=torch.float)
y = torch.rand((2, 2), dtype=torch.float)
fn_s = torch.jit.script(fn)
with torch.cpu.amp.autocast(enabled=False):
check_fn_results(fn(x, y))
check_fn_results(fn_s(x, y))
with torch.cpu.amp.autocast(enabled=True):
check_fn_results(fn(x, y))
check_fn_results(fn_s(x, y))
if __name__ == "__main__":
run_tests()