-
Notifications
You must be signed in to change notification settings - Fork 13
/
qgroup-verify.c
1173 lines (987 loc) · 26.6 KB
/
qgroup-verify.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright (C) 2014 SUSE. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*
* Authors: Mark Fasheh <[email protected]>
*/
#include <stdio.h>
#include <stdlib.h>
#include <uuid/uuid.h>
#include "kerncompat.h"
#include "radix-tree.h"
#include "ctree.h"
#include "disk-io.h"
#include "print-tree.h"
#include "utils.h"
#include "ulist.h"
#include "rbtree-utils.h"
#include "qgroup-verify.h"
/*#define QGROUP_VERIFY_DEBUG*/
static unsigned long tot_extents_scanned = 0;
static void add_bytes(u64 root_objectid, u64 num_bytes, int exclusive);
struct qgroup_count {
u64 qgroupid;
int subvol_exists;
struct btrfs_disk_key key;
struct btrfs_qgroup_info_item diskinfo;
struct btrfs_qgroup_info_item info;
struct rb_node rb_node;
};
struct counts_tree {
struct rb_root root;
unsigned int num_groups;
} counts = { .root = RB_ROOT };
struct rb_root by_bytenr = RB_ROOT;
/*
* List of interior tree blocks. We walk this list after loading the
* extent tree to resolve implied refs. For each interior node we'll
* place a shared ref in the ref tree against each child object. This
* allows the shared ref resolving code to do the actual work later of
* finding roots to account against.
*
* An implied ref is when a tree block has refs on it that may not
* exist in any of its child nodes. Even though the refs might not
* exist further down the tree, the fact that our interior node has a
* ref means we need to account anything below it to all its roots.
*/
struct ulist *tree_blocks = NULL; /* unode->val = bytenr, ->aux
* = tree_block pointer */
struct tree_block {
int level;
u64 num_bytes;
};
struct ref {
u64 bytenr;
u64 num_bytes;
u64 parent;
u64 root;
struct rb_node bytenr_node;
};
#ifdef QGROUP_VERIFY_DEBUG
static void print_ref(struct ref *ref)
{
printf("bytenr: %llu\t\tnum_bytes: %llu\t\t parent: %llu\t\t"
"root: %llu\n", ref->bytenr, ref->num_bytes,
ref->parent, ref->root);
}
static void print_all_refs(void)
{
unsigned long count = 0;
struct ref *ref;
struct rb_node *node;
node = rb_first(&by_bytenr);
while (node) {
ref = rb_entry(node, struct ref, bytenr_node);
print_ref(ref);
count++;
node = rb_next(node);
}
printf("%lu extents scanned with %lu refs in total.\n",
tot_extents_scanned, count);
}
#endif
/*
* Store by bytenr in rbtree
*
* The tree is sorted in ascending order by bytenr, then parent, then
* root. Since full refs have a parent == 0, those will come before
* shared refs.
*/
static int compare_ref(struct ref *orig, u64 bytenr, u64 root, u64 parent)
{
if (bytenr < orig->bytenr)
return -1;
if (bytenr > orig->bytenr)
return 1;
if (parent < orig->parent)
return -1;
if (parent > orig->parent)
return 1;
if (root < orig->root)
return -1;
if (root > orig->root)
return 1;
return 0;
}
/*
* insert a new ref into the tree. returns the existing ref entry
* if one is already there.
*/
static struct ref *insert_ref(struct ref *ref)
{
int ret;
struct rb_node **p = &by_bytenr.rb_node;
struct rb_node *parent = NULL;
struct ref *curr;
while (*p) {
parent = *p;
curr = rb_entry(parent, struct ref, bytenr_node);
ret = compare_ref(curr, ref->bytenr, ref->root, ref->parent);
if (ret < 0)
p = &(*p)->rb_left;
else if (ret > 0)
p = &(*p)->rb_right;
else
return curr;
}
rb_link_node(&ref->bytenr_node, parent, p);
rb_insert_color(&ref->bytenr_node, &by_bytenr);
return ref;
}
/*
* Partial search, returns the first ref with matching bytenr. Caller
* can walk forward from there.
*
* Leftmost refs will be full refs - this is used to our advantage
* when resolving roots.
*/
static struct ref *find_ref_bytenr(u64 bytenr)
{
struct rb_node *n = by_bytenr.rb_node;
struct ref *ref;
while (n) {
ref = rb_entry(n, struct ref, bytenr_node);
if (bytenr < ref->bytenr)
n = n->rb_left;
else if (bytenr > ref->bytenr)
n = n->rb_right;
else {
/* Walk to the left to find the first item */
struct rb_node *node_left = rb_prev(&ref->bytenr_node);
struct ref *ref_left;
while (node_left) {
ref_left = rb_entry(node_left, struct ref,
bytenr_node);
if (ref_left->bytenr != ref->bytenr)
break;
ref = ref_left;
node_left = rb_prev(node_left);
}
return ref;
}
}
return NULL;
}
static struct ref *find_ref(u64 bytenr, u64 root, u64 parent)
{
struct rb_node *n = by_bytenr.rb_node;
struct ref *ref;
int ret;
while (n) {
ref = rb_entry(n, struct ref, bytenr_node);
ret = compare_ref(ref, bytenr, root, parent);
if (ret < 0)
n = n->rb_left;
else if (ret > 0)
n = n->rb_right;
else
return ref;
}
return NULL;
}
static struct ref *alloc_ref(u64 bytenr, u64 root, u64 parent, u64 num_bytes)
{
struct ref *ref = find_ref(bytenr, root, parent);
BUG_ON(parent && root);
if (ref == NULL) {
ref = calloc(1, sizeof(*ref));
if (ref) {
ref->bytenr = bytenr;
ref->root = root;
ref->parent = parent;
ref->num_bytes = num_bytes;
insert_ref(ref);
}
}
return ref;
}
static void free_ref_node(struct rb_node *node)
{
struct ref *ref = rb_entry(node, struct ref, bytenr_node);
free(ref);
}
FREE_RB_BASED_TREE(ref, free_ref_node);
/*
* Resolves all the possible roots for the ref at parent.
*/
static void find_parent_roots(struct ulist *roots, u64 parent)
{
struct ref *ref;
struct rb_node *node;
/*
* Search the rbtree for the first ref with bytenr == parent.
* Walk forward so long as bytenr == parent, adding resolved root ids.
* For each unresolved root, we recurse
*/
ref = find_ref_bytenr(parent);
node = &ref->bytenr_node;
BUG_ON(ref == NULL);
BUG_ON(ref->bytenr != parent);
{
/*
* Random sanity check, are we actually getting the
* leftmost node?
*/
struct rb_node *prev_node = rb_prev(&ref->bytenr_node);
struct ref *prev;
if (prev_node) {
prev = rb_entry(prev_node, struct ref, bytenr_node);
BUG_ON(prev->bytenr == parent);
}
}
do {
if (ref->root)
ulist_add(roots, ref->root, 0, 0);
else
find_parent_roots(roots, ref->parent);
node = rb_next(node);
if (node)
ref = rb_entry(node, struct ref, bytenr_node);
} while (node && ref->bytenr == parent);
}
static void print_subvol_info(u64 subvolid, u64 bytenr, u64 num_bytes,
struct ulist *roots);
/*
* Account each ref. Walk the refs, for each set of refs in a
* given bytenr:
*
* - add the roots for direct refs to the ref roots ulist
*
* - resolve all possible roots for shared refs, insert each
* of those into ref_roots ulist (this is a recursive process)
*
* - Walk ref_roots ulist, adding extent bytes to each qgroup count that
* cooresponds to a found root.
*/
static void account_all_refs(int do_qgroups, u64 search_subvol)
{
int exclusive;
struct ref *ref;
struct rb_node *node;
u64 bytenr, num_bytes;
struct ulist *roots = ulist_alloc(0);
struct ulist_iterator uiter;
struct ulist_node *unode;
node = rb_first(&by_bytenr);
while (node) {
ulist_reinit(roots);
ref = rb_entry(node, struct ref, bytenr_node);
/*
* Walk forward through the list of refs for this
* bytenr, adding roots to our ulist. If it's a full
* ref, then we have the easy case. Otherwise we need
* to search for roots.
*/
bytenr = ref->bytenr;
num_bytes = ref->num_bytes;
do {
BUG_ON(ref->bytenr != bytenr);
BUG_ON(ref->num_bytes != num_bytes);
if (ref->root)
ulist_add(roots, ref->root, 0, 0);
else
find_parent_roots(roots, ref->parent);
/*
* When we leave this inner loop, node is set
* to next in our tree and will be turned into
* a ref object up top
*/
node = rb_next(node);
if (node)
ref = rb_entry(node, struct ref, bytenr_node);
} while (node && ref->bytenr == bytenr);
/*
* Now that we have all roots, we can properly account
* this extent against the corresponding qgroups.
*/
if (roots->nnodes == 1)
exclusive = 1;
else
exclusive = 0;
if (search_subvol)
print_subvol_info(search_subvol, bytenr, num_bytes,
roots);
ULIST_ITER_INIT(&uiter);
while ((unode = ulist_next(roots, &uiter))) {
BUG_ON(unode->val == 0ULL);
/* We only want to account fs trees */
if (is_fstree(unode->val) && do_qgroups)
add_bytes(unode->val, num_bytes, exclusive);
}
}
ulist_free(roots);
}
static u64 resolve_one_root(u64 bytenr)
{
struct ref *ref = find_ref_bytenr(bytenr);
BUG_ON(ref == NULL);
if (ref->root)
return ref->root;
return resolve_one_root(ref->parent);
}
static inline struct tree_block *unode_tree_block(struct ulist_node *unode)
{
return u64_to_ptr(unode->aux);
}
static inline u64 unode_bytenr(struct ulist_node *unode)
{
return unode->val;
}
static int alloc_tree_block(u64 bytenr, u64 num_bytes, int level)
{
struct tree_block *block = calloc(1, sizeof(*block));
if (block) {
block->num_bytes = num_bytes;
block->level = level;
if (ulist_add(tree_blocks, bytenr, ptr_to_u64(block), 0) >= 0)
return 0;
free(block);
}
return -ENOMEM;
}
static void free_tree_blocks(void)
{
struct ulist_iterator uiter;
struct ulist_node *unode;
if (!tree_blocks)
return;
ULIST_ITER_INIT(&uiter);
while ((unode = ulist_next(tree_blocks, &uiter)))
free(unode_tree_block(unode));
ulist_free(tree_blocks);
tree_blocks = NULL;
}
#ifdef QGROUP_VERIFY_DEBUG
static void print_tree_block(u64 bytenr, struct tree_block *block)
{
struct ref *ref;
struct rb_node *node;
printf("tree block: %llu\t\tlevel: %d\n", (unsigned long long)bytenr,
block->level);
ref = find_ref_bytenr(bytenr);
node = &ref->bytenr_node;
do {
print_ref(ref);
node = rb_next(node);
if (node)
ref = rb_entry(node, struct ref, bytenr_node);
} while (node && ref->bytenr == bytenr);
printf("\n");
}
static void print_all_tree_blocks(void)
{
struct ulist_iterator uiter;
struct ulist_node *unode;
if (!tree_blocks)
return;
printf("Listing all found interior tree nodes:\n");
ULIST_ITER_INIT(&uiter);
while ((unode = ulist_next(tree_blocks, &uiter)))
print_tree_block(unode_bytenr(unode), unode_tree_block(unode));
}
#endif
static int add_refs_for_leaf_items(struct extent_buffer *eb, u64 ref_parent)
{
int nr, i;
int extent_type;
u64 bytenr, num_bytes;
struct btrfs_key key;
struct btrfs_disk_key disk_key;
struct btrfs_file_extent_item *fi;
nr = btrfs_header_nritems(eb);
for (i = 0; i < nr; i++) {
btrfs_item_key(eb, &disk_key, i);
btrfs_disk_key_to_cpu(&key, &disk_key);
if (key.type != BTRFS_EXTENT_DATA_KEY)
continue;
fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
/* filter out: inline, disk_bytenr == 0, compressed?
* not if we can avoid it */
extent_type = btrfs_file_extent_type(eb, fi);
if (extent_type == BTRFS_FILE_EXTENT_INLINE)
continue;
bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
if (!bytenr)
continue;
num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
if (alloc_ref(bytenr, 0, ref_parent, num_bytes) == NULL)
return ENOMEM;
}
return 0;
}
static int travel_tree(struct btrfs_fs_info *info, struct btrfs_root *root,
u64 bytenr, u64 num_bytes, u64 ref_parent)
{
int ret, nr, i;
struct extent_buffer *eb;
u64 new_bytenr;
u64 new_num_bytes;
// printf("travel_tree: bytenr: %llu\tnum_bytes: %llu\tref_parent: %llu\n",
// bytenr, num_bytes, ref_parent);
eb = read_tree_block(root, bytenr, num_bytes, 0);
if (!eb)
return -EIO;
ret = 0;
/* Don't add a ref for our starting tree block to itself */
if (bytenr != ref_parent) {
if (alloc_ref(bytenr, 0, ref_parent, num_bytes) == NULL)
return ENOMEM;
}
if (btrfs_is_leaf(eb)) {
ret = add_refs_for_leaf_items(eb, ref_parent);
goto out;
}
/*
* Interior nodes are tuples of (key, bytenr) where key is the
* leftmost key in the tree block pointed to by bytenr. We
* don't have to care about key here, just follow the bytenr
* pointer.
*/
nr = btrfs_header_nritems(eb);
for (i = 0; i < nr; i++) {
new_bytenr = btrfs_node_blockptr(eb, i);
new_num_bytes = btrfs_level_size(root,
btrfs_header_level(eb) - 1);
ret = travel_tree(info, root, new_bytenr, new_num_bytes,
ref_parent);
}
out:
free_extent_buffer(eb);
return ret;
}
static int add_refs_for_implied(struct btrfs_fs_info *info, u64 bytenr,
struct tree_block *block)
{
int ret;
u64 root_bytenr = resolve_one_root(bytenr);
struct btrfs_root *root;
struct btrfs_key key;
key.objectid = root_bytenr;
key.type = BTRFS_ROOT_ITEM_KEY;
key.offset = (u64)-1;
/*
* XXX: Don't free the root object as we don't know whether it
* came off our fs_info struct or not.
*/
root = btrfs_read_fs_root(info, &key);
if (!root || IS_ERR(root))
return ENOENT;
ret = travel_tree(info, root, bytenr, block->num_bytes, bytenr);
if (ret)
return ret;
return 0;
}
/*
* Place shared refs in the ref tree for each child of an interior tree node.
*/
static int map_implied_refs(struct btrfs_fs_info *info)
{
int ret = 0;
struct ulist_iterator uiter;
struct ulist_node *unode;
ULIST_ITER_INIT(&uiter);
while ((unode = ulist_next(tree_blocks, &uiter))) {
ret = add_refs_for_implied(info, unode_bytenr(unode),
unode_tree_block(unode));
if (ret)
goto out;
}
out:
return ret;
}
/*
* insert a new root into the tree. returns the existing root entry
* if one is already there. qgroupid is used
* as the key
*/
static int insert_count(struct qgroup_count *qc)
{
struct rb_node **p = &counts.root.rb_node;
struct rb_node *parent = NULL;
struct qgroup_count *curr;
while (*p) {
parent = *p;
curr = rb_entry(parent, struct qgroup_count, rb_node);
if (qc->qgroupid < curr->qgroupid)
p = &(*p)->rb_left;
else if (qc->qgroupid > curr->qgroupid)
p = &(*p)->rb_right;
else
return EEXIST;
}
counts.num_groups++;
rb_link_node(&qc->rb_node, parent, p);
rb_insert_color(&qc->rb_node, &counts.root);
return 0;
}
static struct qgroup_count *find_count(u64 qgroupid)
{
struct rb_node *n = counts.root.rb_node;
struct qgroup_count *count;
while (n) {
count = rb_entry(n, struct qgroup_count, rb_node);
if (qgroupid < count->qgroupid)
n = n->rb_left;
else if (qgroupid > count->qgroupid)
n = n->rb_right;
else
return count;
}
return NULL;
}
static struct qgroup_count *alloc_count(struct btrfs_disk_key *key,
struct extent_buffer *leaf,
struct btrfs_qgroup_info_item *disk)
{
struct qgroup_count *c = calloc(1, sizeof(*c));
struct btrfs_qgroup_info_item *item;
if (c) {
c->qgroupid = btrfs_disk_key_offset(key);
c->key = *key;
item = &c->diskinfo;
item->generation = btrfs_qgroup_info_generation(leaf, disk);
item->referenced = btrfs_qgroup_info_referenced(leaf, disk);
item->referenced_compressed =
btrfs_qgroup_info_referenced_compressed(leaf, disk);
item->exclusive = btrfs_qgroup_info_exclusive(leaf, disk);
item->exclusive_compressed =
btrfs_qgroup_info_exclusive_compressed(leaf, disk);
if (insert_count(c)) {
free(c);
c = NULL;
}
}
return c;
}
static void add_bytes(u64 root_objectid, u64 num_bytes, int exclusive)
{
struct qgroup_count *count = find_count(root_objectid);
struct btrfs_qgroup_info_item *qg;
BUG_ON(num_bytes < 4096); /* Random sanity check. */
if (!count)
return;
qg = &count->info;
qg->referenced += num_bytes;
/*
* count of compressed bytes is unimplemented, so we do the
* same as kernel.
*/
qg->referenced_compressed += num_bytes;
if (exclusive) {
qg->exclusive += num_bytes;
qg->exclusive_compressed += num_bytes;
}
}
static int load_quota_info(struct btrfs_fs_info *info)
{
int ret;
struct btrfs_root *root = info->quota_root;
struct btrfs_root *tmproot;
struct btrfs_path path;
struct btrfs_key key;
struct btrfs_key root_key;
struct btrfs_disk_key disk_key;
struct extent_buffer *leaf;
struct btrfs_qgroup_info_item *item;
struct qgroup_count *count;
int i, nr;
btrfs_init_path(&path);
key.offset = 0;
key.objectid = 0;
key.type = 0;
ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
if (ret < 0) {
fprintf(stderr, "ERROR: Couldn't search slot: %d\n", ret);
goto out;
}
while (1) {
leaf = path.nodes[0];
nr = btrfs_header_nritems(leaf);
for(i = 0; i < nr; i++) {
btrfs_item_key(leaf, &disk_key, i);
btrfs_disk_key_to_cpu(&key, &disk_key);
if (key.type == BTRFS_QGROUP_RELATION_KEY)
printf("Ignoring qgroup relation key %llu\n",
key.objectid);
/*
* Ignore: BTRFS_QGROUP_STATUS_KEY,
* BTRFS_QGROUP_LIMIT_KEY, BTRFS_QGROUP_RELATION_KEY
*/
if (key.type != BTRFS_QGROUP_INFO_KEY)
continue;
item = btrfs_item_ptr(leaf, i,
struct btrfs_qgroup_info_item);
count = alloc_count(&disk_key, leaf, item);
if (!count) {
ret = ENOMEM;
fprintf(stderr, "ERROR: out of memory\n");
goto out;
}
root_key.objectid = key.offset;
root_key.type = BTRFS_ROOT_ITEM_KEY;
root_key.offset = (u64)-1;
tmproot = btrfs_read_fs_root_no_cache(info, &root_key);
if (tmproot && !IS_ERR(tmproot)) {
count->subvol_exists = 1;
free(tmproot);
}
}
ret = btrfs_next_leaf(root, &path);
if (ret != 0)
break;
}
ret = 0;
btrfs_release_path(&path);
out:
return ret;
}
static int add_inline_refs(struct btrfs_fs_info *info,
struct extent_buffer *ei_leaf, int slot,
u64 bytenr, u64 num_bytes, int meta_item)
{
struct btrfs_extent_item *ei;
struct btrfs_extent_inline_ref *iref;
struct btrfs_extent_data_ref *dref;
u64 flags, root_obj, offset, parent;
u32 item_size = btrfs_item_size_nr(ei_leaf, slot);
int type;
unsigned long end;
unsigned long ptr;
ei = btrfs_item_ptr(ei_leaf, slot, struct btrfs_extent_item);
flags = btrfs_extent_flags(ei_leaf, ei);
if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !meta_item) {
struct btrfs_tree_block_info *tbinfo;
tbinfo = (struct btrfs_tree_block_info *)(ei + 1);
iref = (struct btrfs_extent_inline_ref *)(tbinfo + 1);
} else {
iref = (struct btrfs_extent_inline_ref *)(ei + 1);
}
ptr = (unsigned long)iref;
end = (unsigned long)ei + item_size;
while (ptr < end) {
iref = (struct btrfs_extent_inline_ref *)ptr;
parent = root_obj = 0;
offset = btrfs_extent_inline_ref_offset(ei_leaf, iref);
type = btrfs_extent_inline_ref_type(ei_leaf, iref);
switch (type) {
case BTRFS_TREE_BLOCK_REF_KEY:
root_obj = offset;
break;
case BTRFS_EXTENT_DATA_REF_KEY:
dref = (struct btrfs_extent_data_ref *)(&iref->offset);
root_obj = btrfs_extent_data_ref_root(ei_leaf, dref);
break;
case BTRFS_SHARED_DATA_REF_KEY:
case BTRFS_SHARED_BLOCK_REF_KEY:
parent = offset;
break;
default:
return 1;
}
if (alloc_ref(bytenr, root_obj, parent, num_bytes) == NULL)
return ENOMEM;
ptr += btrfs_extent_inline_ref_size(type);
}
return 0;
}
static int add_keyed_ref(struct btrfs_fs_info *info,
struct btrfs_key *key,
struct extent_buffer *leaf, int slot,
u64 bytenr, u64 num_bytes)
{
u64 root_obj = 0, parent = 0;
struct btrfs_extent_data_ref *dref;
switch(key->type) {
case BTRFS_TREE_BLOCK_REF_KEY:
root_obj = key->offset;
break;
case BTRFS_EXTENT_DATA_REF_KEY:
dref = btrfs_item_ptr(leaf, slot, struct btrfs_extent_data_ref);
root_obj = btrfs_extent_data_ref_root(leaf, dref);
break;
case BTRFS_SHARED_DATA_REF_KEY:
case BTRFS_SHARED_BLOCK_REF_KEY:
parent = key->offset;
break;
default:
return 1;
}
if (alloc_ref(bytenr, root_obj, parent, num_bytes) == NULL)
return ENOMEM;
return 0;
}
/*
* return value of 0 indicates leaf or not meta data. The code that
* calls this does not need to make a distinction between the two as
* it is only concerned with intermediate blocks which will always
* have level > 0.
*/
static int get_tree_block_level(struct btrfs_key *key,
struct extent_buffer *ei_leaf,
int slot)
{
int level = 0;
int meta_key = key->type == BTRFS_METADATA_ITEM_KEY;
u64 flags;
struct btrfs_extent_item *ei;
ei = btrfs_item_ptr(ei_leaf, slot, struct btrfs_extent_item);
flags = btrfs_extent_flags(ei_leaf, ei);
if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !meta_key) {
struct btrfs_tree_block_info *tbinfo;
tbinfo = (struct btrfs_tree_block_info *)(ei + 1);
level = btrfs_tree_block_level(ei_leaf, tbinfo);
} else if (meta_key) {
/* skinny metadata */
level = (int)key->offset;
}
return level;
}
/*
* Walk the extent tree, allocating a ref item for every ref and
* storing it in the bytenr tree.
*/
static int scan_extents(struct btrfs_fs_info *info,
u64 start, u64 end)
{
int ret, i, nr, level;
struct btrfs_root *root = info->extent_root;
struct btrfs_key key;
struct btrfs_path path;
struct btrfs_disk_key disk_key;
struct extent_buffer *leaf;
u64 bytenr = 0, num_bytes = 0;
btrfs_init_path(&path);
key.objectid = start;
key.type = 0;
key.offset = 0;
ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
if (ret < 0) {
fprintf(stderr, "ERROR: Couldn't search slot: %d\n", ret);
goto out;
}
path.reada = 1;
while (1) {
leaf = path.nodes[0];
nr = btrfs_header_nritems(leaf);
for(i = 0; i < nr; i++) {
btrfs_item_key(leaf, &disk_key, i);
btrfs_disk_key_to_cpu(&key, &disk_key);
if (key.objectid < start)
continue;
if (key.objectid > end)
goto done;
if (key.type == BTRFS_EXTENT_ITEM_KEY ||
key.type == BTRFS_METADATA_ITEM_KEY) {
int meta = 0;
tot_extents_scanned++;
bytenr = key.objectid;
num_bytes = key.offset;
if (key.type == BTRFS_METADATA_ITEM_KEY) {
num_bytes = info->extent_root->leafsize;
meta = 1;
}
ret = add_inline_refs(info, leaf, i, bytenr,
num_bytes, meta);
if (ret)
goto out;
level = get_tree_block_level(&key, leaf, i);
if (level) {
if (alloc_tree_block(bytenr, num_bytes,
level))
return ENOMEM;
}
continue;
}
if (key.type > BTRFS_SHARED_DATA_REF_KEY)
continue;
if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
continue;
/*
* Keyed refs should come after their extent
* item in the tree. As a result, the value of
* bytenr and num_bytes should be unchanged
* from the above block that catches the
* original extent item.
*/
BUG_ON(key.objectid != bytenr);
ret = add_keyed_ref(info, &key, leaf, i, bytenr,
num_bytes);
if (ret)
goto out;
}
ret = btrfs_next_leaf(root, &path);
if (ret != 0) {
if (ret < 0) {
fprintf(stderr,
"ERROR: Next leaf failed: %d\n", ret);
goto out;
}
break;
}
}
done:
ret = 0;
out:
btrfs_release_path(&path);
return ret;
}
static void print_fields(u64 bytes, u64 bytes_compressed, char *prefix,
char *type)
{