-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathReferences
49 lines (49 loc) · 9.56 KB
/
References
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
1. Su, K., Li, J., Fu, H.: Smart city and the applications. In: 2011 International Conference on Electronics, Communications and Control (ICECC). pp. 1028–1031 (2011). https://doi.org/10.1109/ICECC.2011.6066743.
2. AL Mansour, H., Lundy, M.: Crime Types Prediction. In: Alfaries, A., Mengash, H., Yasar, A., and Shakshuki, E. (eds.) Advances in Data Science, Cyber Security and IT Applications. pp. 260–274. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-36365-9_22.
3. Damasceno de Melo, M., Teixeira, J., Campos, G.: A Prediction Model for Criminal Levels Specialized in Brazilian Cities. In: Georgiadis, C.K., Jahankhani, H., Pimenidis, E., Bashroush, R., and Al-Nemrat, A. (eds.) Global Security, Safety and Sustainability & e-Democracy. pp. 131–138. Springer, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33448-1_19.
4. Ibrahim, N., Wang, S., Zhao, B.: Spatiotemporal Crime Hotspots Analysis and Crime Occurrence Prediction. In: Li, J., Wang, S., Qin, S., Li, X., and Wang, S. (eds.) Advanced Data Mining and Applications. pp. 579–588. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-35231-8_42.
5. Pradhan, I.: Exploratory Data Analysis And Crime Prediction In San Francisco. Master’s Projects. (2018). https://doi.org/10.31979/etd.3usp-3sdy.
6. ADERO, E., OKEYO, G., MWANGI, W.: A Model for Visual and Intuitive Crime Investigation Based on Associative Rule Mining Technique (VICIBARM): A Case Study of Kenya. In: 2019 IST-Africa Week Conference (IST-Africa). pp. 1–8 (2019). https://doi.org/10.23919/ISTAFRICA.2019.8764876.
7. Chauhan, C., Sehgal, S.: A review: Crime analysis using data mining techniques and algorithms. In: 2017 International Conference on Computing, Communication and Automation (ICCCA). pp. 21–25 (2017). https://doi.org/10.1109/CCAA.2017.8229823.
8. Shamsuddin, N.H.M., Ali, N.A., Alwee, R.: An overview on crime prediction methods. In: 2017 6th ICT International Student Project Conference (ICT-ISPC). pp. 1–5 (2017). https://doi.org/10.1109/ICT-ISPC.2017.8075335.
9. Yadav, S., Timbadia, M., Yadav, A., Vishwakarma, R., Yadav, N.: Crime pattern detection, analysis and prediction. In: 2017 International conference of Electronics, Communication and Aerospace Technology (ICECA). pp. 225–230 (2017). https://doi.org/10.1109/ICECA.2017.8203676.
10. Jin, G., Wang, Q., Zhu, C., Feng, Y., Huang, J., Zhou, J.: Addressing Crime Situation Forecasting Task with Temporal Graph Convolutional Neural Network Approach. In: 2020 12th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). pp. 474–478 (2020). https://doi.org/10.1109/ICMTMA50254.2020.00108.
11. Butt, U.M., Letchmunan, S., Hassan, F.H., Ali, M., Baqir, A., Sherazi, H.H.R.: Spatio-Temporal Crime HotSpot Detection and Prediction: A Systematic Literature Review. IEEE Access. 8, 166553–166574 (2020). https://doi.org/10.1109/ACCESS.2020.3022808.
12. Government of Ontaro: Incident-based crime statistics, by detailed violations, police services in Ontario - Open Government Portal, https://open.canada.ca/data/en/dataset/7b6ea768-52cf-443a-8037-c53e11ae1bd1, last accessed 2020/10/09.
13. Government of Toronto: Toronto Police Service Public Safety Data Portal, https://data.torontopolice.on.ca/datasets?q=crime, last accessed 2020/10/09.
14. Government of United Kingdom: Crime in England and Wales 2008/2009, https://data.gov.uk/dataset/9320d5c1-6dcf-4ef0-9af1-649f491cb9f9/crime-in-england-and-wales-2008-2009, last accessed 2020/10/09.
15. Government of San Francisco: Results matching category of Public Safety, https://data.sfgov.org/browse?category=Public+Safety, last accessed 2020/10/09.
16. Government of Boston: Crime Incident Reports (August 2015 - To Date) (Source: New System) - Analyze Boston, https://data.boston.gov/dataset/crime-incident-reports-august-2015-to-date-source-new-system, last accessed 2020/10/09.
17. Cressey, D.P.: Crime: Causes of Crime in International Encyclopedia of the Social Sciences, (1968).
18. Cano, I., Soares, G.D.: As teorias sobre as causas da criminalidade, (2002).
19. Boggs, S.L.: Urban Crime Patterns. American Sociological Review. 30, 899–908 (1965). https://doi.org/10.2307/2090968.
20. Batella, W.B., Diniz, A.M.A.: Análise espacial dos condicionantes da criminalidade violenta no estado de Minas Gerais. Sociedade & Natureza. 22, 151–163 (2010). https://doi.org/10.1590/S1982-45132010000100011.
21. Menezes, D.B., Souza, V.G. de: Relações entre crimes na Região Metropolitana de Porto Alegre: um primeiro diagnóstico da organização criminal. Indicadores Econômicos FEE. 45, 87–108 (2017).
22. Wang, X., Gerber, M.S., Brown, D.E.: Automatic Crime Prediction Using Events Extracted from Twitter Posts. In: Yang, S.J., Greenberg, A.M., and Endsley, M. (eds.) Social Computing, Behavioral - Cultural Modeling and Prediction. pp. 231–238. Springer, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29047-3_28.
23. Bogomolov, A., Lepri, B., Staiano, J., Oliver, N., Pianesi, F., Pentland, A.: Once Upon a Crime: Towards Crime Prediction from Demographics and Mobile Data. In: Proceedings of the 16th International Conference on Multimodal Interaction. pp. 427–434. Association for Computing Machinery, New York, NY, USA (2014). https://doi.org/10.1145/2663204.2663254.
24. Gilaberte, B.: Crimes Contra a Pessoa. Freitas Bastos (2013).
25. Ang, S., Wang, W., Chyou, S.: San Francisco Crime Classification. CSE. (2015).
26. Shermila, A.M., Bellarmine, A.B., Santiago, N.: Crime Data Analysis and Prediction of Perpetrator Identity Using Machine Learning Approach. In: 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI). pp. 107–114 (2018). https://doi.org/10.1109/ICOEI.2018.8553904.
27. Predict Prevent Crime | Predictive Policing Software, https://www.predpol.com/, last accessed 2019/11/01.
28. Reis, D.C. dos, Almeida, T.A.C. de, Miranda, M.M., Alves, R.H., Madeira, A.M.F., Reis, D.C. dos, Almeida, T.A.C. de, Miranda, M.M., Alves, R.H., Madeira, A.M.F.: Health vulnerabilities in adolescence: socioeconomic conditions, social networks, drugs and violence. Revista Latino-Americana de Enfermagem. 21, 586–594 (2013). https://doi.org/10.1590/S0104-11692013000200016.
29. Tavares, R., Catalan, V.D.B., Romano, P.M. de M., Melo, E.M.: Homicídios e vulnerabilidade social. Ciênc. saúde coletiva. 21, 923–934 (2016). https://doi.org/10.1590/1413-81232015213.12362015.
30. Determinantes da criminalidade: arcabouços teóricos e resultados empíricos, https://www.scielo.br/scielo.php?pid=S0011-52582004000200002&script=sci_arttext, last accessed 2020/10/09.
31. IBGE: IBGE | Cidades@ | Pará | Belém | Panorama, https://cidades.ibge.gov.br/brasil/pa/belem/panorama, last accessed 2020/10/20.
32. IPEA: Atlas da Violêcia, https://www.ipea.gov.br/atlasviolencia/arquivos/downloads/7047-190802atlasdaviolencia2019municipios.pdf, last accessed 2020/10/20.
33. L10406, http://www.planalto.gov.br/ccivil_03/leis/2002/l10406.htm, last accessed 2020/04/11.
34. Código Penal Brasileiro, http://www.planalto.gov.br/ccivil_03/decreto-lei/del2848compilado.htm, last accessed 2020/04/11.
35. Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling. John Wiley & Sons, Indianapolis, IN (2013).
36. Data Preprocessing (preprocess) — Orange Data Mining Library 3 documentation, https://docs.biolab.si//3/data-mining-library/reference/preprocess.html#normalization, last accessed 2020/04/27.
37. Nearest Neighbors — scikit-learn 0.23.2 documentation, https://scikit-learn.org/stable/modules/neighbors.html, last accessed 2020/11/16.
38. Support Vector Machines — scikit-learn 0.23.2 documentation, https://scikit-learn.org/stable/modules/svm.html, last accessed 2020/11/16.
39. sklearn.tree.DecisionTreeClassifier — scikit-learn 0.23.2 documentation, https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html, last accessed 2020/11/16.
40. Neural network models (supervised) — scikit-learn 0.23.2 documentation, https://scikit-learn.org/stable/modules/neural_networks_supervised.html, last accessed 2020/11/16.
41. Naive Bayes — scikit-learn 0.23.2 documentation, https://scikit-learn.org/stable/modules/naive_bayes.html, last accessed 2020/11/16.
42. sklearn.linear_model.LogisticRegression — scikit-learn 0.23.2 documentation, https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html, last accessed 2020/11/16.
43. sklearn.ensemble.GradientBoostingClassifier — scikit-learn 0.23.2 documentation, https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html, last accessed 2020/11/16.
44. sklearn.ensemble.RandomForestClassifier — scikit-learn 0.23.2 documentation, https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html, last accessed 2020/11/16.
45. XGBoost Documentation — xgboost 1.3.0-SNAPSHOT documentation, https://xgboost.readthedocs.io/en/latest/, last accessed 2020/11/16.
46. Welcome to LightGBM’s documentation! — LightGBM 3.1.0 documentation, https://lightgbm.readthedocs.io/en/latest/index.html, last accessed 2020/11/16.
47. Usage examples - CatBoost. Documentation, https://catboost.ai/docs/concepts/python-usages-examples.html, last accessed 2020/11/16.
48. sklearn.model_selection.GridSearchCV — scikit-learn 0.23.2 documentation, https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html, last accessed 2020/11/16.
49. sklearn.metrics.roc_auc_score, https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html#sklearn.metrics.roc_auc_score, last accessed 2020/11/22.