-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathfinetune_simplified.py
765 lines (660 loc) · 32.3 KB
/
finetune_simplified.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet, RoBERTa, Albert, XLM-RoBERTa)."""
import argparse
import glob
import json
import logging
import os
import random
import pprint
from typing import DefaultDict
import numpy
import numpy as np
import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from torch.utils.data.distributed import DistributedSampler
import dist
from tqdm import tqdm, trange
from torch.utils.data import Dataset
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
WEIGHTS_NAME,
AdamW,
AutoConfig,
AutoModelForSequenceClassification,
AutoTokenizer,
get_linear_schedule_with_warmup,
glue_compute_metrics as compute_metrics,
glue_convert_examples_to_features as convert_examples_to_features,
glue_output_modes as output_modes,
glue_processors as processors,
)
import pdb
from transformers import BertForSequenceClassification
from helpers import *
from dataset import LogicDataset
logger = logging.getLogger(__name__)
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def train(args, train_dataset, model, tokenizer, eval_dataset=None):
""" Train the model """
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, collate_fn = train_dataset.collate_fn, sampler=train_sampler, batch_size=args.train_batch_size, num_workers = args.num_workers)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
]
# resume_dir
if args.resume_dir is not None:
print("Resume training from: ", args.resume_dir)
if not args.resume_dir.endswith("--1"):
args.model_name_or_path = args.resume_dir
print("Load Model Weight")
model.load_state_dict(torch.load(args.resume_dir + "/pytorch_model.bin", map_location="cpu"))
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
num_warmup_steps = int(t_total * args.warmup_steps)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=t_total
)
# Check if saved optimizer or scheduler states exist
if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
os.path.join(args.model_name_or_path, "scheduler.pt")
):
print("Loading optimizer and scheduler from checkpoints", args.model_name_or_path)
# Load in optimizer and scheduler states
optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt"), map_location="cpu"))
scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt"), map_location="cpu"))
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True,
)
# Train!
print("***** Running training *****")
print(" Num examples = %d", len(train_dataset))
print(" Num Epochs = %d", args.num_train_epochs)
print(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
print(
" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size
* args.gradient_accumulation_steps
* (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
)
print(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
print(" Total optimization steps = %d", t_total)
global_step = 0
epochs_trained = 0
steps_trained_in_current_epoch = 0
# Check if continuing training from a checkpoint
if os.path.exists(args.model_name_or_path):
#set global_step to global_step of last saved checkpoint from model path
epochs_trained = int(args.model_name_or_path.split("-")[-1].split("/")[0])
epochs_trained += 1
global_step = epochs_trained * len(train_dataloader) * args.gradient_accumulation_steps
print(" Continuing training from checkpoint, will skip to saved global_step")
print(" Continuing training starting from epoch %d", epochs_trained)
print(" Continuing training from global step %d", global_step)
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(
epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0],
)
set_seed(args) # Added here for reproductibility
train_meter = TrainingMeter()
epoch_num = epochs_trained
for _ in train_iterator:
epoch_iterator = train_dataloader
for step, batch in enumerate(tqdm(epoch_iterator)):
batch, examples = batch[:-1], batch[-1]
if args.skip_training:
break
# Skip past any already trained steps if resuming training
if steps_trained_in_current_epoch > 0:
steps_trained_in_current_epoch -= 1
continue
model.train()
batch = tuple(t.to(args.device) for t in batch)
inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if args.model_type != "distilbert" and args.model_type != "t5":
inputs["token_type_ids"] = (
batch[2] if args.model_type in ["bert", "xlnet", "albert"] else None
) # XLM, DistilBERT, RoBERTa, and XLM-RoBERTa don't use segment_ids
with torch.cuda.amp.autocast(enabled=args.use_autocast):
outputs = model(**inputs)
loss = outputs[0] # model outputs are always tuple in transformers (see doc)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
logits = outputs[1]
labels = batch[3]
acc = (logits.argmax(-1) == labels).sum().float() / labels.view(-1).size(0)
train_meter.update(
{
"loss": loss.item(),
"acc": acc.item()
}
)
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0 or (
# last step in epoch but step is always smaller than gradient_accumulation_steps
len(epoch_iterator) <= args.gradient_accumulation_steps
and (step + 1) == len(epoch_iterator)
):
if not args.fp16 and not args.use_autocast:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
logs = {}
if (
args.local_rank == -1 and args.evaluate_during_training
): # Only evaluate when single GPU otherwise metrics may not average well
results = evaluate(args, model, tokenizer)
for key, value in results.items():
eval_key = "eval_{}".format(key)
logs[eval_key] = value
loss_scalar = (tr_loss - logging_loss) / args.logging_steps
learning_rate_scalar = scheduler.get_lr()[0]
logs["learning_rate"] = learning_rate_scalar
logs["loss"] = loss_scalar
logging_loss = tr_loss
print(json.dumps({**logs, **{"step": global_step}, **{"step_per_epoch": len(train_dataloader) // args.gradient_accumulation_steps}}))
train_meter.report()
train_meter.clean()
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
# Save model checkpoint
output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
torch.save(args, os.path.join(output_dir, "training_args.bin"))
print("Saving model checkpoint to %s", output_dir)
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
if args.local_rank <= 0:
output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(epoch_num))
print("Saving model checkpoint to ", output_dir)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
torch.save(args, os.path.join(output_dir, "training_args.bin"))
# save optimizer
torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
# save scheduler
torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
evaluate(args, model, tokenizer, eval_dataset=eval_dataset)
epoch_num += 1
return global_step, tr_loss / global_step
def evaluate(args, model, tokenizer, prefix="", eval_dataset = None):
results = {}
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(eval_dataset)
#eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
eval_dataloader = DataLoader(eval_dataset, collate_fn = eval_dataset.collate_fn, sampler=eval_sampler, batch_size=args.eval_batch_size)
# multi-gpu eval
if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel):
model = torch.nn.DataParallel(model)
# Eval!
print("***** Running evaluation {} *****".format(prefix))
print(" Num examples = %d", len(eval_dataset))
print(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
preds = None
out_label_ids = None
output_strings = []
label_strings = []
results_by_reasoning_depth = defaultdict(int)
counter_by_reasoning_depth = defaultdict(int)
def nested_defaultdict():
return defaultdict(int)
label_distribution_by_reasoning_depth = defaultdict(nested_defaultdict)
correct_or_not_all = defaultdict(list)
correct_counter = 0
total_counter = 0
for _, batch in enumerate(tqdm(eval_dataloader, desc="Evaluating")):
model.eval()
batch, examples = batch[:-1], batch[-1]
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if args.model_type != "distilbert" and args.model_type != "t5":
inputs["token_type_ids"] = (
batch[2] if args.model_type in ["bert", "xlnet", "albert"] else None
) # XLM, DistilBERT, RoBERTa, and XLM-RoBERTa don't use segment_ids
if args.model_type == "t5":
# if model has module
if hasattr(model, "module"):
_module = model.module
else:
_module = model
output_sequences = _module.generate(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
do_sample=False, # disable sampling to test if batching affects output
)
outputs = tokenizer.batch_decode(output_sequences, skip_special_tokens=True)
output_strings.extend(outputs)
label_strings.extend(tokenizer.batch_decode(inputs["labels"], skip_special_tokens=True))
nb_eval_steps += 1
else:
outputs = model(**inputs)
tmp_eval_loss, logits = outputs[:2]
eval_loss += tmp_eval_loss.mean().item()
nb_eval_steps += 1
if preds is None:
preds = logits.detach().cpu().numpy()
out_label_ids = inputs["labels"].detach().cpu().numpy()
else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0)
if args.model_type == "t5":
correct_or_not = [output_strings[i] == label_strings[i] for i in range(len(output_strings))]
correct_counter += sum(correct_or_not)
total_counter += len(correct_or_not)
if args.report_example_length:
correct_or_not = (logits.argmax(-1) == inputs["labels"].detach()).cpu().tolist()
for index in range(len(examples)):
results_by_reasoning_depth[examples[index]["depth"]] += correct_or_not[index]
counter_by_reasoning_depth[examples[index]["depth"]] += 1
label_distribution_by_reasoning_depth[examples[index]["depth"]][examples[index]["label"]] += 1
for index in range(len(examples)):
correct_or_not_all[examples[index]["example_index"]].append(correct_or_not[index])
if args.report_example_length:
print()
keys = list(results_by_reasoning_depth.keys())
keys.sort()
for key in keys:
if args.local_rank <= 0:
print(" Depth {}: {}".format(key, results_by_reasoning_depth[key]/counter_by_reasoning_depth[key]))
print(" Label_distribution {} : {}".format(key, label_distribution_by_reasoning_depth[key]))
if "t5" in args.model_name_or_path:
result = {"acc": correct_counter / total_counter}
results.update(result)
else:
eval_loss = eval_loss / nb_eval_steps
preds = np.argmax(preds, axis=1)
result = {"acc": (out_label_ids == preds).mean()}
results.update(result)
return results
def main():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_type",
default=None,
type=str,
required=True,
#help="Model type selected in the list: " + ", ".join(MODEL_TYPES),
)
parser.add_argument(
"--model_name_or_path",
default=None,
type=str,
required=True,
#help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS),
)
parser.add_argument(
"--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model predictions and checkpoints will be written.",
)
# Other parameters
parser.add_argument(
"--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name",
)
parser.add_argument(
"--tokenizer_name",
default="",
type=str,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--cache_dir",
default="",
type=str,
help="Where do you want to store the pre-trained models downloaded from s3",
)
parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
parser.add_argument("--do_visualization", action="store_true")
parser.add_argument(
"--evaluate_during_training", action="store_true", help="Run evaluation during training at each logging step.",
)
parser.add_argument(
"--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model.",
)
parser.add_argument(
"--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.",
)
parser.add_argument(
"--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-6, type=float, help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument(
"--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.",
)
parser.add_argument(
"--max_steps",
default=-1,
type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
)
parser.add_argument("--warmup_steps", default=0, type=float, help="Linear warmup over warmup_steps.")
parser.add_argument("--logging_steps", type=int, default=500, help="Log every X updates steps.")
parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.")
parser.add_argument(
"--eval_all_checkpoints",
action="store_true",
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
)
parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
parser.add_argument("--from_scratch", action="store_true", help="Avoid using CUDA when available")
parser.add_argument(
"--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory",
)
parser.add_argument(
"--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets",
)
parser.add_argument(
"--nopooler", action="store_true", help="Do not load the pooler",
)
parser.add_argument("--seed", type=int, default=9595, help="random seed for initialization")
parser.add_argument(
"--fp16",
action="store_true",
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
)
parser.add_argument(
"--fp16_opt_level",
type=str,
default="O1",
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html",
)
parser.add_argument(
"--custom_weight",
type=str,
default=None
)
parser.add_argument(
"--custom_config",
type=str,
default=None
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.")
parser.add_argument("--server_port", type=str, default="", help="For distant debugging.")
parser.add_argument("--max_length", type=int, default=128)
parser.add_argument("--file_root", type=str, default=None)
parser.add_argument("--file_path", type=str)
parser.add_argument("--num_workers", type=int, default=2)
parser.add_argument("--start_gradual_index", type=int, default=1)
parser.add_argument("--load_bert_weight", type=str, default=None)
parser.add_argument("--use_gradual_sampler", action="store_true")
parser.add_argument('--limit_to_negative_examples', action="store_true")
parser.add_argument('--limit_to_positive_examples', action="store_true")
parser.add_argument("--skip_training", action="store_true")
parser.add_argument("--further_split", action="store_true")
parser.add_argument("--further_further_split", action="store_true")
parser.add_argument("--report_example_length", action="store_true")
parser.add_argument("--ignore_fact", action="store_true")
parser.add_argument("--ignore_both", action="store_true")
parser.add_argument("--ignore_query", action="store_true")
parser.add_argument("--change_positional_embedding_after_loading", action="store_true")
parser.add_argument("--change_positional_embedding_before_loading", action="store_true")
parser.add_argument("--shorten_input", action="store_true")
parser.add_argument('--shrink_ratio', default=1, type=int)
parser.add_argument('--use_autocast', action="store_true")
parser.add_argument('--max_depth_during_train', default=1000, type=int)
parser.add_argument("--train_file_path", default=None)
parser.add_argument("--val_file_path", default=None)
parser.add_argument("--group_by_which_depth", default="depth")
parser.add_argument("--keep_only_negative", action="store_true")
parser.add_argument("--limit_report_depth", default=-1, type=int)
parser.add_argument("--limit_report_max_depth", default=100, type=int)
parser.add_argument("--skip_long_examples", action="store_true")
parser.add_argument("--limit_example_num", default=-1, type=int)
parser.add_argument("--resume_dir", default=None)
args = parser.parse_args()
if (
os.path.exists(args.output_dir)
and os.listdir(args.output_dir)
and args.do_train
and not args.overwrite_output_dir
):
raise ValueError(
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
args.output_dir
)
)
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend="nccl")
args.n_gpu = 1
args.device = device
setup_for_distributed(args.local_rank <= 0)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank,
device,
args.n_gpu,
bool(args.local_rank != -1),
args.fp16,
)
# Set seed
set_seed(args)
num_labels = 2
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
args.model_type = args.model_type.lower()
config = AutoConfig.from_pretrained(
args.config_name if args.config_name else args.model_name_or_path,
num_labels=num_labels,
# finetuning_task=args.task_name,
cache_dir=args.cache_dir if args.cache_dir else None,
)
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
do_lower_case=args.do_lower_case,
cache_dir=args.cache_dir if args.cache_dir else None,
)
if "bert" in args.model_name_or_path:
model = BertForSequenceClassification.from_pretrained(
args.model_name_or_path,
config=config,
cache_dir=args.cache_dir if args.cache_dir else None,
)
if "t5" in args.model_name_or_path:
from transformers import T5Tokenizer, T5ForConditionalGeneration
model = T5ForConditionalGeneration.from_pretrained(args.model_name_or_path)
else:
model = AutoModelForSequenceClassification.from_pretrained(
args.model_name_or_path,
config=config,
cache_dir=args.cache_dir if args.cache_dir else None,
)
if args.change_positional_embedding_before_loading:
expand_position_embeddings(model, args.max_length, args.model_name_or_path)
if args.custom_weight is not None:
model.apply(model._init_weights)
custom_state_dict = torch.load(args.custom_weight, map_location='cpu')
for key in list(custom_state_dict.keys()):
custom_state_dict[key.replace("module.", "")] = custom_state_dict[key]
load_state_dict_flexible(model, custom_state_dict)
print("\n\nLoaded {}".format(args.custom_weight))
if args.load_bert_weight is not None:
original_bert_weight = torch.load(args.load_bert_weight, map_location="cpu")
old_keys = []
new_keys = []
for key in original_bert_weight.keys():
new_key = None
if 'gamma' in key:
new_key = key.replace('gamma', 'weight')
if 'beta' in key:
new_key = key.replace('beta', 'bias')
if new_key:
old_keys.append(key)
new_keys.append(new_key)
for old_key, new_key in zip(old_keys, new_keys):
original_bert_weight[new_key] = original_bert_weight.pop(old_key)
load_state_dict_flexible(model, original_bert_weight)
if args.change_positional_embedding_after_loading:
expand_position_embeddings(model, args.max_length, args.model_name_or_path)
if args.nopooler:
model.bert.pooler.apply(model._init_weights)
if args.from_scratch:
print("\n\nReinitializing parameters\n\n")
model.bert.apply(model._init_weights)
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
model.to(args.device)
print("Training/evaluation parameters %s", args)
# Training
if args.do_train:
train_dataset = LogicDataset.initialze_from_file(args.train_file_path, args)
train_dataset.report_length()
val_dataset = LogicDataset.initialze_from_file(args.val_file_path, args)
global_step, tr_loss = train(args, train_dataset, model, tokenizer, val_dataset)
print(" global_step = %s, average loss = %s", global_step, tr_loss)
# Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
# Create output directory if needed
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
print("Saving model checkpoint to %s", args.output_dir)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
model_to_save.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
# Good practice: save your training arguments together with the trained model
torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
tokenizer = AutoTokenizer.from_pretrained(args.output_dir)
# Evaluation
print("Enterring evaluation")
if args.do_eval and args.local_rank in [-1, 0]:
model.eval()
if "," in args.val_file_path:
val_files = args.val_file_path.split(",")
else:
val_files = [args.val_file_path]
all_results = {}
all_kinds_of_results = []
results_string_final = ""
for val_file in val_files:
results_string = {}
results = []
print("\n\n", val_file)
val_dataset = LogicDataset.initialze_from_file(val_file, args)
val_dataset.report_allkinds_of_stats()
datasets = LogicDataset.initialize_from_file_by_depth(val_file, args)
depths = list(datasets.keys())
depths.sort()
total_example = sum([len(datasets[i]) for i in datasets])
for depth in depths:
print("\n\n")
print("Evaluating examples of depth ", depth)
result = evaluate(args, model, tokenizer, eval_dataset=datasets[depth])
results_string[depth] = "Acc: {} ; Percentage {}".format(result["acc"], len(datasets[depth]) / total_example)
all_kinds_of_results.append(result["acc"])
if depth >= args.limit_report_depth and depth <= args.limit_report_max_depth:
results.append(result['acc'])
pprint.pprint(results_string)
results_string_final += val_file + "\n\n"
results_string_final += pprint.pformat(results_string)
results_string_final += "\n\n\n"
all_kinds_of_results.insert(0, sum(all_kinds_of_results) / len(all_kinds_of_results))
all_results[val_file] = "{:.3f}".format((sum(results) / len(results)) * 100)
all_kinds_of_results.insert(1, sum(results) / len(results))
print("Final Reporting")
for key in sorted(list(all_results.keys())):
print(key)
print()
for key in sorted(list(all_results.keys())):
print(all_results[key])
pprint.pprint(all_results)
with open("eval_result.txt", "a+") as f:
f.write(args.custom_weight)
f.write("\n\n")
f.write(results_string_final)
f.write("\n\n\n\n\n")
if __name__ == "__main__":
main()