-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplots.py
372 lines (304 loc) · 17.9 KB
/
plots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
# %%
# model_name = 'microsoft/Phi-3-mini-4k-instruct'
# task = 'color'
# ag_news
# navigate
# color
def getInfo(model_name, task):
if(model_name == 'microsoft/Phi-3-mini-4k-instruct'):
layers = 12
if(task == 'ag_news'):
fileName = 'BaysianOptimization/error/phi-3/ag_news/NN_kernel_layer_0_6_angle_-0.7853981633974483_0.7853981633974483_reasoning_prob_mix_v2_0.pkl'
if(task == 'navigate'):
fileName = 'BaysianOptimization/error/phi-3/navigate/NN_kernel_layer_0_6_angle_-0.7853981633974483_0.7853981633974483_reasoning_prob_mix_v2_3.pkl'
if(task == 'color'):
fileName = 'BaysianOptimization/error/phi-3/color/NN_kernel_layer_0_6_angle_-0.7853981633974483_0.7853981633974483_reasoning_prob_mix_v2_0.pkl'
if(task == 'entailed_polarity'):
fileName = 'BaysianOptimization/error/phi-3/entailed_polarity/NN_kernel_layer_0_6_angle_-0.7853981633974483_0.7853981633974483_reasoning_prob_mix_v2_4.pkl'
if(task == 'winowhy'):
fileName = 'BaysianOptimization/error/phi-3/winowhy/NN_kernel_layer_0_6_angle_-0.7853981633974483_0.7853981633974483_reasoning_prob_mix_rotary_v2_0.pkl'
if(model_name == 'meta-llama/Meta-Llama-3-8B-Instruct'):
layers = 32
if(task == 'ag_news'):
fileName = 'BaysianOptimization/error/llama-3-8b/ag_news/NN_kernel_layer_0_16_angle_-0.5235987755982988_0.5235987755982988_reasoning_prob_mix_rotary_v2_0.pkl'
if(task == 'navigate'):
fileName = 'BaysianOptimization/error/llama-3-8b/navigate/NN_kernel_layer_0_16_angle_-0.5235987755982988_0.5235987755982988_reasoning_prob_mix_rotary_v2_4.pkl'
if(task == 'color'):
fileName = 'BaysianOptimization/error/llama-3-8b/color/NN_kernel_layer_0_16_angle_-0.5235987755982988_0.5235987755982988_reasoning_prob_mix_rotary_v2_3.pkl'
if(task == 'entailed_polarity'):
fileName = 'BaysianOptimization/error/llama-3-8b/entailed_polarity/NN_kernel_layer_0_16_angle_-0.5235987755982988_0.5235987755982988_reasoning_prob_mix_rotary_v2_1.pkl'
if(task == 'winowhy'):
fileName = 'BaysianOptimization/error/llama-3-8b/winowhy/NN_kernel_layer_0_16_angle_-0.5235987755982988_0.5235987755982988_reasoning_prob_mix_rotary_v2_1.pkl'
if(model_name == 'Qwen/Qwen2-1.5B-Instruct'):
layers = 10
if(task == 'ag_news'):
fileName = 'BaysianOptimization/error/qwen_2/ag_news/NN_kernel_layer_0_5_angle_-0.7853981633974483_0.7853981633974483_reasoning_prob_mix_rotary_v2_0.pkl'
if(task == 'navigate'):
fileName = 'BaysianOptimization/error/qwen_2/navigate/NN_kernel_layer_0_5_angle_-0.7853981633974483_0.7853981633974483_reasoning_prob_mix_rotary_v2_2.pkl'
if(task == 'color'):
fileName = 'BaysianOptimization/error/qwen_2/color/NN_kernel_layer_0_5_angle_-0.7853981633974483_0.7853981633974483_reasoning_prob_mix_rotary_v2_2.pkl'
if(task == 'entailed_polarity'):
fileName = 'BaysianOptimization/error/qwen_2/entailed_polarity/NN_kernel_layer_0_5_angle_-0.7853981633974483_0.7853981633974483_reasoning_prob_mix_rotary_v2_2.pkl'
if(task == 'winowhy'):
fileName = 'BaysianOptimization/error/qwen_2/winowhy/NN_kernel_layer_0_5_angle_-0.7853981633974483_0.7853981633974483_reasoning_prob_mix_rotary_v2_2.pkl'
if(model_name == 'mistralai/Mistral-7B-Instruct-v0.1'):
layers = 32
if(task == 'ag_news'):
fileName = 'BaysianOptimization/error/mixtral/ag_news/NN_kernel_layer_0_16_angle_-0.5235987755982988_0.5235987755982988_reasoning_prob_mix_rotary_v2_3.pkl'
if(task == 'navigate'):
fileName = 'BaysianOptimization/error/mixtral/navigate/NN_kernel_layer_0_16_angle_-0.5235987755982988_0.5235987755982988_reasoning_prob_mix_rotary_v2_4.pkl'
if(task == 'color'):
fileName = 'BaysianOptimization/error/mixtral/color/NN_kernel_layer_0_16_angle_-0.5235987755982988_0.5235987755982988_reasoning_prob_mix_rotary_v2_3.pkl'
if(task == 'entailed_polarity'):
fileName = 'BaysianOptimization/error/mixtral/entailed_polarity/NN_kernel_layer_0_16_angle_-0.5235987755982988_0.5235987755982988_reasoning_prob_mix_rotary_v2_1.pkl'
if(task == 'winowhy'):
fileName = 'BaysianOptimization/error/mixtral/winowhy/NN_kernel_layer_0_16_angle_-0.5235987755982988_0.5235987755982988_reasoning_prob_mix_rotary_v2_3.pkl'
return layers, fileName
# %%
import pickle
from transformers import AutoTokenizer
modelNames = ['microsoft/Phi-3-mini-4k-instruct', 'meta-llama/Meta-Llama-3-8B-Instruct', 'Qwen/Qwen2-1.5B-Instruct', 'mistralai/Mistral-7B-Instruct-v0.1']
tasks = ['ag_news','navigate', 'color', 'entailed_polarity', 'winowhy']
for model_name in modelNames:
minlogit = []
for task in tasks:
layers, fileName = getInfo(model_name, task)
with open(fileName, 'rb') as f:
data = pickle.load(f)
tokenizer = AutoTokenizer.from_pretrained(model_name)
print(f'Processing {model_name} for task {task}', len(data))
if(len(data) == 50):
import torch
layer_wise = [0] * layers
layer_wise_error = [0] * layers
count = 0
from tqdm import tqdm
rotated_accuracy = 0
normal_accuracy = 0
for i in tqdm(range(len(data))):
prompt = data[i]['prompt']
label = data[i]['label']
normal_token = data[i]['normal']
rotated_token = data[i]['rotated']
rotated_cache = data[i]['rotated_cache']
normal_cache = data[i]['normal_cache']
umembed = data[i]['umembed']
answer_token = tokenizer.encode(label['complete'], add_special_tokens=False)[0]
# print(answer_token, rotated_token, normal_token)
if(label['complete'].startswith(rotated_token)):
count += 1
for j in range(layers):
# print(j)
if(f'blocks.{j}.hook_resid_post' in rotated_cache):
key = f'blocks.{j}.hook_resid_post'
else:
key = f'blocks.{j}.hook_resid_mid'
normal_logits_layer = umembed(normal_cache[key].to('cuda')).detach().cpu()
rotated_logits_layer = umembed(rotated_cache[key].to('cuda')).detach().cpu()
rotated_answer_token_prob = torch.nn.functional.softmax(rotated_logits_layer[:, -1, :], dim=-1)[0, answer_token].item()
normal_answer_token_prob = torch.nn.functional.softmax(normal_logits_layer[:, -1, :], dim=-1)[0, answer_token].item()
_, sorted_indices = torch.sort(rotated_logits_layer[:, -1, :][0], descending=True)
rotated_rank = (sorted_indices == answer_token).nonzero(as_tuple=True)[0].item()
_, sorted_indices = torch.sort(normal_logits_layer[:, -1, :][0], descending=True)
normal_rank = (sorted_indices == answer_token).nonzero(as_tuple=True)[0].item()
# print(rotated_rank, normal_rank)
# if(j == '31?otated_rank, normal_rank)
rotated_logit_normalised = (rotated_logits_layer[:, -1] - rotated_logits_layer[:, -1].min()) / (rotated_logits_layer[:, -1].max() - rotated_logits_layer[:, -1].min())
normal_logit_normalised = (normal_logits_layer[:, -1] - normal_logits_layer[:, -1].min()) / (normal_logits_layer[:, -1].max() - normal_logits_layer[:, -1].min())
prob_diff = normal_answer_token_prob - rotated_answer_token_prob
layer_wise[j] += prob_diff
layer_wise_error[j] += prob_diff ** 2
elif(len(data) == 51):
import torch
layer_wise = [0] * layers
layer_wise_error = [0] * layers
umembed = data[-1]['unembed']
count = 0
from tqdm import tqdm
rotated_accuracy = 0
normal_accuracy = 0
for i in tqdm(range(len(data) - 1)):
prompt = data[i]['prompt']
label = data[i]['label']
normal_token = data[i]['normal']
rotated_token = data[i]['rotated']
rotated_cache = data[i]['rotated_cache']
normal_cache = data[i]['normal_cache']
# umembed = data[i]['umembed']
answer_token = tokenizer.encode(label['complete'], add_special_tokens=False)[0]
# print(answer_token, rotated_token, normal_token)
if(label['complete'].startswith(rotated_token)):
count += 1
for j in range(layers):
# print(j)
if(f'blocks.{j}.hook_resid_post' in rotated_cache):
key = f'blocks.{j}.hook_resid_post'
else:
key = f'blocks.{j}.hook_resid_mid'
normal_logits_layer = umembed(normal_cache[key].to('cuda')).detach().cpu()
rotated_logits_layer = umembed(rotated_cache[key].to('cuda')).detach().cpu()
rotated_answer_token_prob = torch.nn.functional.softmax(rotated_logits_layer[:, -1, :], dim=-1)[0, answer_token].item()
normal_answer_token_prob = torch.nn.functional.softmax(normal_logits_layer[:, -1, :], dim=-1)[0, answer_token].item()
_, sorted_indices = torch.sort(rotated_logits_layer[:, -1, :][0], descending=True)
rotated_rank = (sorted_indices == answer_token).nonzero(as_tuple=True)[0].item()
_, sorted_indices = torch.sort(normal_logits_layer[:, -1, :][0], descending=True)
normal_rank = (sorted_indices == answer_token).nonzero(as_tuple=True)[0].item()
# print(rotated_rank, normal_rank)
# if(j == '31?otated_rank, normal_rank)
rotated_logit_normalised = (rotated_logits_layer[:, -1] - rotated_logits_layer[:, -1].min()) / (rotated_logits_layer[:, -1].max() - rotated_logits_layer[:, -1].min())
normal_logit_normalised = (normal_logits_layer[:, -1] - normal_logits_layer[:, -1].min()) / (normal_logits_layer[:, -1].max() - normal_logits_layer[:, -1].min())
prob_diff = normal_answer_token_prob - rotated_answer_token_prob
layer_wise[j] += prob_diff
layer_wise_error[j] += prob_diff ** 2
for j in range(layers):
# Mean difference for each layer
layer_wise[j] /= count
# Calculate standard deviation or standard error
variance = (layer_wise_error[j] / count) - (layer_wise[j] ** 2)
layer_wise_error[j] = torch.sqrt(torch.tensor(variance / count))
import matplotlib.pyplot as plt
layers_range = range(layers)
plt.errorbar(layers_range, layer_wise, yerr=layer_wise_error, fmt='-o', capsize=5, label='Layer-wise Difference')
plt.xlabel('Layers')
plt.ylabel('Difference in Answer Token Probability')
plt.title(f'Layer wise Prob Difference for Model {model_name}, Task {fileName.split("/")[-2]}')
# plt.legend()
# plt.show()
# save pdf
model_save = model_name.replace('/', '_')
# plt.savefig(f'Model_{model_save}_Task_{fileName.split("/")[-2]}.pdf')
# save svg
plt.savefig(f'svg/Model_{model_save}_Task_{fileName.split("/")[-2]}.svg')
plt.close()
plt.clf()
# model_name = 'microsoft/Phi-3-mini-4k-instruct'
# layers = 12
# fileName = 'BaysianOptimization/error/phi-3/winowhy/NN_kernel_layer_0_6_angle_-0.7853981633974483_0.7853981633974483_reasoning_prob_mix_rotary_v2_0.pkl'
# %%
# BaysianOptimization/error/llama-3-8b/entailed_polarity/NN_kernel_layer_0_16_angle_-0.5235987755982988_0.5235987755982988_reasoning_prob_mix_rotary_v2_2.pkl
# %%
# from transformers import AutoTokenizer
# # %%
# # tokenizer = AutoTokenizer.from_pretrained(model_name)
# # %%
# with open(fileName, 'rb') as f:
# data = pickle.load(f)
# # %%
# import torch.nn.functional as F
# def kl_divergence(input_logit, target_logit):
# input_next_token_logit = input_logit[:, -1, :]
# target_next_token_logit = target_logit[:, -1, :]
# input_logProb = F.softmax(input_next_token_logit, dim=-1)
# target_logProb = F.softmax(target_next_token_logit, dim=-1)
# kl_div = F.kl_div(input_logProb, target_logProb,log_target=True, reduction="none").sum(dim=-1)
# return kl_div.mean().detach().cpu()
# # %%
# len(data)
# # %%
# umembed = data[-1]['unembed']
# # %%
# import torch
# layer_wise = [0] * layers
# layer_wise_error = [0] * layers
# count = 0
# from tqdm import tqdm
# rotated_accuracy = 0
# normal_accuracy = 0
# for i in tqdm(range(len(data) - 1)):
# prompt = data[i]['prompt']
# label = data[i]['label']
# normal_token = data[i]['normal']
# rotated_token = data[i]['rotated']
# rotated_cache = data[i]['rotated_cache']
# normal_cache = data[i]['normal_cache']
# # umembed = data[i]['umembed']
# answer_token = tokenizer.encode(label['complete'], add_special_tokens=False)[0]
# # print(answer_token, rotated_token, normal_token)
# if(label['complete'].startswith(rotated_token)):
# count += 1
# for j in range(layers):
# # print(j)
# normal_logits_layer = umembed(normal_cache[f'blocks.{j}.hook_resid_post'].to('cuda')).detach().cpu()
# rotated_logits_layer = umembed(rotated_cache[f'blocks.{j}.hook_resid_post'].to('cuda')).detach().cpu()
# rotated_answer_token_prob = torch.nn.functional.softmax(rotated_logits_layer[:, -1, :], dim=-1)[0, answer_token].item()
# normal_answer_token_prob = torch.nn.functional.softmax(normal_logits_layer[:, -1, :], dim=-1)[0, answer_token].item()
# _, sorted_indices = torch.sort(rotated_logits_layer[:, -1, :][0], descending=True)
# rotated_rank = (sorted_indices == answer_token).nonzero(as_tuple=True)[0].item()
# _, sorted_indices = torch.sort(normal_logits_layer[:, -1, :][0], descending=True)
# normal_rank = (sorted_indices == answer_token).nonzero(as_tuple=True)[0].item()
# # print(rotated_rank, normal_rank)
# # if(j == '31?otated_rank, normal_rank)
# rotated_logit_normalised = (rotated_logits_layer[:, -1] - rotated_logits_layer[:, -1].min()) / (rotated_logits_layer[:, -1].max() - rotated_logits_layer[:, -1].min())
# normal_logit_normalised = (normal_logits_layer[:, -1] - normal_logits_layer[:, -1].min()) / (normal_logits_layer[:, -1].max() - normal_logits_layer[:, -1].min())
# prob_diff = normal_answer_token_prob - rotated_answer_token_prob
# layer_wise[j] += prob_diff
# layer_wise_error[j] += prob_diff ** 2
# # layer_wise[j].append(rotated_answer_token_prob - normal_answer_token_prob)
# # %%
# count
# # %%
# for j in range(layers):
# # Mean difference for each layer
# layer_wise[j] /= count
# # Calculate standard deviation or standard error
# variance = (layer_wise_error[j] / count) - (layer_wise[j] ** 2)
# layer_wise_error[j] = torch.sqrt(torch.tensor(variance / count))
# # %%
# import matplotlib.pyplot as plt
# layers_range = range(layers)
# plt.errorbar(layers_range, layer_wise, yerr=layer_wise_error, fmt='-o', capsize=5, label='Layer-wise Difference')
# plt.xlabel('Layers')
# plt.ylabel('Difference in Answer Token Probability')
# plt.title(f'Layer wise Prob Difference for Model {model_name}, Task {fileName.split("/")[-2]}')
# # plt.legend()
# # plt.show()
# # save pdf
# model_save = model_name.replace('/', '_')
# # plt.savefig(f'Model_{model_save}_Task_{fileName.split("/")[-2]}.pdf')
# # save svg
# plt.savefig(f'svg/Model_{model_save}_Task_{fileName.split("/")[-2]}.svg')
# # %%
# import numpy as np
# layer_wise_mean = [np.mean(layer) for layer in layer_wise]
# layer_wise_std = [np.std(layer) for layer in layer_wise] # This will be used as the error margin
# # %%
# import matplotlib.pyplot as plt
# plt.figure(figsize=(10, 6))
# layers_range = range(layers)
# plt.errorbar(layers_range, layer_wise_mean, yerr=layer_wise_std, fmt='-o', capsize=5, label='Difference in Answer Token Probabilities')
# plt.xlabel('Layer')
# plt.ylabel('Difference in Answer Token Probability (Rotated - Normal)')
# plt.legend()
# plt.title(f'Layer wise Prob Difference for Model {model_name}, Task {fileName.split("/")[-2]}')
# # %%
# rotated_logits_layer[0, -1] - normal_logits_layer[0, -1]
# # %%
# print(rotated_accuracy, normal_accuracy, count)
# # %%
# for i in range(len(layer_wise)):
# layer_wise[i] = layer_wise[i] / count
# # %%
# count
# # %%
# layer_wise
# # %%
# # plot the layer wise difference
# import matplotlib.pyplot as plt
# plt.plot(layer_wise)
# # xaxis
# plt.xlabel('Layer')
# # yaxis
# # plt.ylabel('KL Divergence')
# # plt.ylabel('logit difference')
# plt.ylabel('Prob Difference')
# # title
# plt.title(f'Layer wise Prob Difference for Model {model_name}, Task {fileName.split("/")[-2]}')
# # plt.title(f'Layer wise logit difference for Model {model_name}, Task {fileName.split("/")[-2]}')
# # plt.title(f'Layer wise KL Divergence for Model {model_name}, Task {fileName.split("/")[-2]}')
# # plt.title(f'Layer wise Rank Difference for Model {model_name}, Task {fileName.split("/")[-2]}')
# # %%
# torch.nn.functional.softmax(rotated_logits_layer[:, -1, :], dim=1).shape
# # %%
# import torch
# torch.nn.functional.softmax(normal_logits_layer, dim=-1).shape
# # %%