forked from All-Hands-AI/OpenHands
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_infer.py
470 lines (408 loc) Β· 16.8 KB
/
run_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
import asyncio
import json
import os
import pathlib
import re
import sqlite3
import subprocess
import zipfile
from typing import Any
import pandas as pd
from datasets import load_dataset
from func_timeout import FunctionTimedOut, func_timeout
from tqdm import tqdm
from evaluation.utils.shared import (
EvalMetadata,
EvalOutput,
make_metadata,
prepare_dataset,
reset_logger_for_multiprocessing,
run_evaluation,
)
from openhands.controller.state.state import State
from openhands.core.config import (
AppConfig,
SandboxConfig,
get_llm_config_arg,
parse_arguments,
)
from openhands.core.logger import openhands_logger as logger
from openhands.core.main import create_runtime, run_controller
from openhands.events.action import CmdRunAction, MessageAction
from openhands.events.observation import CmdOutputObservation
from openhands.runtime.runtime import Runtime
def codeact_user_response(state: State) -> str:
msg = (
'Please continue working on the task on whatever approach you think is suitable.\n'
'If you think you have completed the SQL, please run the following command: <execute_bash> exit </execute_bash>.\n'
'IMPORTANT: YOU SHOULD NEVER ASK FOR HUMAN HELP OR USE THE INTERNET TO SOLVE THIS TASK.\n'
)
if state.history:
# check if the agent has tried to talk to the user 3 times, if so, let the agent know it can give up
user_msgs = [
event
for event in state.history.get_events()
if isinstance(event, MessageAction) and event.source == 'user'
]
if len(user_msgs) > 2:
# let the agent know that it can give up when it has tried 3 times
return (
msg
+ 'If you want to give up, run: <execute_bash> exit </execute_bash>.\n'
)
return msg
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
'CodeActAgent': codeact_user_response,
}
AGENT_CLS_TO_INST_SUFFIX = {
'CodeActAgent': 'When you think you have fixed the issue through code changes, please run the following command: <execute_bash> exit </execute_bash>.\n'
}
def get_config(
metadata: EvalMetadata,
) -> AppConfig:
config = AppConfig(
default_agent=metadata.agent_class,
run_as_openhands=False,
runtime='eventstream',
max_iterations=metadata.max_iterations,
sandbox=SandboxConfig(
base_container_image='python:3.11-bookworm',
enable_auto_lint=True,
use_host_network=False,
),
# do not mount workspace
workspace_base=None,
workspace_mount_path=None,
)
config.set_llm_config(metadata.llm_config)
return config
def execute_sql(db_path, gen_sql, gold_sql):
"""Execute the generated SQL and the ground truth SQL and compare the results."""
with sqlite3.connect(db_path) as conn:
cursor = conn.cursor()
cursor.execute(gen_sql)
predicted_res = cursor.fetchall()
cursor.execute(gold_sql)
ground_truth_res = cursor.fetchall()
res = 0
if set(predicted_res) == set(ground_truth_res):
res = 1
return res
LOCAL_DATASET_PATH = os.path.join(os.path.dirname(__file__), 'data')
def load_bird():
"""Main function to handle the flow of downloading, processing, and loading the bird dataset."""
def _download_bird():
"""Downloads and extracts the bird dataset from a specified URL into a local directory."""
devset_path = os.path.join(LOCAL_DATASET_PATH, 'dev')
if not os.path.exists(devset_path):
logger.info(
f'{LOCAL_DATASET_PATH} folder does not exist, starting download and extraction...'
)
os.makedirs(LOCAL_DATASET_PATH, exist_ok=True)
download_url = 'https://bird-bench.oss-cn-beijing.aliyuncs.com/dev.zip'
download_path = os.path.join(LOCAL_DATASET_PATH, 'dev.zip')
if not os.path.exists(download_path):
logger.info('Start Downloading...')
subprocess.run(['wget', download_url, '-O', download_path])
logger.info('Download completed.')
devset_path = os.path.join(LOCAL_DATASET_PATH, 'dev')
if not os.path.exists(devset_path):
logger.info('Start Extracting...')
os.makedirs(devset_path, exist_ok=True)
with zipfile.ZipFile(download_path, 'r') as zip_ref:
zip_ref.extractall(devset_path)
# move everything in 'dev_20240627' to the root folder
for file in os.listdir(os.path.join(devset_path, 'dev_20240627')):
os.rename(
os.path.join(devset_path, 'dev_20240627', file),
os.path.join(devset_path, file),
)
os.rmdir(os.path.join(devset_path, 'dev_20240627'))
logger.info('Extraction completed.')
# extract databases
database_path = os.path.join(devset_path, 'dev_databases.zip')
assert os.path.exists(database_path)
logger.info('Start Extracting...')
with zipfile.ZipFile(database_path, 'r') as zip_ref:
zip_ref.extractall(devset_path)
logger.info('Extraction completed.')
else:
logger.info(f'{LOCAL_DATASET_PATH} folder already exists.')
return devset_path
def _extract_create_table_prompt(db_path, limit_value=0):
"""Generates a SQL prompt with CREATE TABLE statements and sample data from the database."""
table_query = "SELECT * FROM sqlite_master WHERE type='table';"
tables = sqlite3.connect(db_path).cursor().execute(table_query).fetchall()
prompt = ''
for table in tables:
table_name = table[1]
create_table_statement = table[-1]
table_info_query = f'PRAGMA table_info(`{table_name}`);'
top_k_row_query = f'SELECT * FROM {table_name} LIMIT {limit_value};'
try:
headers = [
x[1]
for x in sqlite3.connect(db_path)
.cursor()
.execute(table_info_query)
.fetchall()
]
except Exception:
logger.error(f'Error Connection: {table_info_query}, {top_k_row_query}')
exit(0)
prompt += create_table_statement + ';\n'
if limit_value > 0:
top_k_rows = (
sqlite3.connect(db_path)
.cursor()
.execute(top_k_row_query)
.fetchall()
)
prompt += (
f"/*\n3 example rows:\n{top_k_row_query}\n{' '.join(headers)}\n"
)
for row in top_k_rows:
row = [str(x) for x in row]
row = [x if x is not None else '' for x in row]
prompt += ' '.join(row) + '\n'
prompt += '*/\n'
prompt += '\n'
return prompt
def _create_prompt(e, database_path):
"""Create a prompt for the given example"""
db_id = e['db_id']
db_path = pathlib.Path(database_path) / db_id / f'{db_id}.sqlite'
# Extract the CREATE TABLE statements and sample data from the database
prompt = _extract_create_table_prompt(db_path)
prompt += f"-- External Knowledge: {e['evidence']}\n\n"
prompt += '-- Using valid SQLite and understanding External Knowledge, answer the following questions for the tables provided above.\n\n'
prompt += '-- Using valid SQLite, answer the following questions for the tables provided above.\n'
prompt += f"Question: {e['question']}\n"
return prompt
def _process_bird(dataset_path):
"""Processes the raw bird dataset into a structured format and saves it as JSON."""
processed_path = os.path.join(LOCAL_DATASET_PATH, 'dev', 'processed_dev.json')
if not os.path.exists(processed_path):
logger.info(
f'{processed_path} folder does not exist, starting processing...'
)
raw_data_path = os.path.join(LOCAL_DATASET_PATH, 'dev', 'dev.json')
database_path = os.path.join(LOCAL_DATASET_PATH, 'dev', 'dev_databases')
processed_data = []
with pathlib.Path(raw_data_path).open('r') as f:
data = json.load(f)
for e in tqdm(data):
item = {
'instance_id': f'{len(processed_data)}',
'db_path': os.path.join(
database_path, e['db_id'], f"{e['db_id']}.sqlite"
),
'db_id': e['db_id'],
'instruction': _create_prompt(e, database_path),
'SQL': e['SQL'],
}
processed_data.append(item)
with pathlib.Path(processed_path).open('w') as f:
json.dump(processed_data, f, indent=2)
logger.info(f'Processed data saved to {processed_path}')
else:
logger.info(f'{processed_path} folder already exists.')
bird_dataset = load_dataset('json', data_files={'test': processed_path})
return bird_dataset
raw_dataset_path = _download_bird()
bird_dataset = _process_bird(raw_dataset_path)
return bird_dataset
async def initialize_runtime(
runtime: Runtime,
instance: pd.Series, # this argument is not required
):
"""Initialize the runtime for the agent.
This function is called before the runtime is used to run the agent.
"""
logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}")
obs: CmdOutputObservation
# Copy the database to the workspace
db_file = os.path.join(
LOCAL_DATASET_PATH,
'dev',
'dev_databases',
instance.db_id,
f'{instance.db_id}.sqlite',
)
await runtime.copy_to(db_file, '/workspace')
# Check the database is copied
action = CmdRunAction(
command='cd /workspace && ls -l',
keep_prompt=False,
)
obs = await runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert obs.exit_code == 0
assert f'{instance.db_id}.sqlite' in obs.content
logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}")
async def complete_runtime(
runtime: Runtime,
instance: pd.Series, # this argument is not required, but it is used to get the workspace_dir_name
) -> dict[str, Any]:
"""Complete the runtime for the agent.
This function is called before the runtime is used to run the agent.
If you need to do something in the sandbox to get the correctness metric after
the agent has run, modify this function.
"""
logger.info(f"{'-' * 50} BEGIN Runtime Completion Fn {'-' * 50}")
obs: CmdOutputObservation
timeout = 30
test_result = {'result': {}, 'metadata': {}}
# Read the generated python file
instance_id = instance.instance_id.replace('/', '__')
path = os.path.join('/workspace', f'{instance_id}.py')
action = CmdRunAction(
command=f'cat {path}',
keep_prompt=False,
)
obs = await runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
if obs.exit_code != 0:
test_result['result'] = {'passed': 0, 'status': 'error'}
return test_result
gen_file = obs.content.strip().replace('\r\n', '\n')
# Extract the SQL from the python file
gen_sql = ''
pattern = r'sql\s*=\s*"([^"]+)"'
match = re.search(pattern, gen_file)
if match:
gen_sql = match.group(1)
else:
print('No match found.')
gold_sql = instance.SQL
# Execute the SQL
try:
res = func_timeout(
timeout,
execute_sql,
args=(
instance.db_path,
gen_sql,
gold_sql,
),
)
status = 'success'
except FunctionTimedOut:
res = 0
status = 'timeout'
except Exception as e:
res = 0
status = 'error'
logger.error(f'Error: {e}')
# Save the test result
test_result['result'] = {'passed': res, 'status': status}
test_result['metadata'] = {
'timeout': timeout,
'gen_sql': gen_sql,
'gold_sql': gold_sql,
}
logger.info(f"{'-' * 50} END Runtime Completion Fn {'-' * 50}")
return test_result
async def process_instance(
instance: pd.Series,
metadata: EvalMetadata,
reset_logger: bool = True,
) -> EvalOutput:
config = get_config(metadata)
# use session id for concurrent evaluation
instance_id = instance.instance_id.replace('/', '__')
# Set up the logger properly, so you can run multi-processing to parallelize the evaluation
if reset_logger:
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
reset_logger_for_multiprocessing(logger, instance_id, log_dir)
else:
logger.info(f'Starting evaluation for instance {instance_id}.')
# Create file with BIRD instance
database_path = os.path.join('/workspace', f'{instance.db_id}.sqlite')
statements = f"""
import sqlite3
def execute_sql(db_path, sql):
with sqlite3.connect(db_path) as conn:
cursor = conn.cursor()
cursor.execute(sql)
result = cursor.fetchall()
return result
if __name__ == '__main__':
sql = "" # fill in your SQL here
db_path = "{database_path}"
print(db_path)
result = execute_sql(db_path, sql)
print(result)
"""
instruction = (
f'You are a SQL expert and need to complete the following text-to-SQL tasks.'
f'\n\n{instance.instruction}\n\n'
'Please write the SQL in one line without line breaks.'
f'And write a new python file named {instance_id}.py to call the SQL you wrote.'
'You need to follow the code template below:'
f'\n\n{statements}\n\n'
'Environment has been set up for you to start working.'
'You may assume all necessary tools are installed.\n\n'
)
instruction += (
'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
'You SHOULD INCLUDE PROPER INDENTATION in your edit commands.\n'
)
# NOTE: You can actually set slightly different instruction for different agents
instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class]
runtime = await create_runtime(config, sid=instance_id)
await initialize_runtime(runtime, instance)
# Here's how you can run the agent (similar to the `main` function) and get the final task state
state: State | None = await run_controller(
config=config,
task_str=instruction,
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[metadata.agent_class],
runtime=runtime,
)
# ======= Attempt to evaluate the agent's edits =======
test_result = await complete_runtime(runtime, instance)
# If you are working on some simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
# You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
if state is None:
raise ValueError('State should not be None.')
metrics = state.metrics.get() if state.metrics else None
# history is now available as a stream of events, rather than list of pairs of (Action, Observation)
# for compatibility with the existing output format, we can remake the pairs here
# remove when it becomes unnecessary
histories = state.history.compatibility_for_eval_history_pairs()
# Save the output
output = EvalOutput(
instance_id=instance.instance_id,
instruction=instruction,
metadata=metadata,
history=histories,
metrics=metrics,
error=state.last_error if state and state.last_error else None,
test_result=test_result,
)
return output
if __name__ == '__main__':
args = parse_arguments()
bird_dataset = load_bird()
dataset = bird_dataset['test'].to_pandas()
dataset.rename(columns={'task_id': 'instance_id'}, inplace=True)
llm_config = None
if args.llm_config:
llm_config = get_llm_config_arg(args.llm_config)
if llm_config is None:
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
metadata = make_metadata(
llm_config,
'BIRD',
args.agent_cls,
args.max_iterations,
args.eval_note,
args.eval_output_dir,
)
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
instances = prepare_dataset(dataset, output_file, args.eval_n_limit)
asyncio.run(
run_evaluation(
instances, metadata, output_file, args.eval_num_workers, process_instance
)
)