forked from ymirsky/Kitsune-py
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Kitsune.pyx
70 lines (58 loc) · 2.84 KB
/
Kitsune.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
cimport FeatureExtractor as FE
cimport KitNET.KitNET as KitNET
from KitNET.KitNET import KitNET
import time
# MIT License
#
# Copyright (c) 2018 Yisroel mirsky
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
cdef class Kitsune:
cdef FE.FE FE
cdef KitNET.KitNET AnomDetector
def __init__(self, str file_path, double limit, int max_autoencoder_size=10, int fm_grace=10000,
int ad_grace=90000, double learning_rate=0.1, double hidden_ratio=0.75,
str feature_map=None, str ensemble_layer=None, str output_layer=None,
str train_stats=None, str attack='', bint train_skip=False, int offset=0):
# init packet feature extractor (AfterImage)
self.FE = FE.FE(file_path, limit, max_autoencoder_size, fm_grace, ad_grace,
train_stats, train_skip, attack, offset)
# init Kitnet
self.AnomDetector = KitNET(self.FE.get_num_features(), max_autoencoder_size, fm_grace,
ad_grace, learning_rate, hidden_ratio, feature_map,
ensemble_layer, output_layer, attack)
def proc_next_packet(self, flag):
start = time.time()
pkt, pktstats, pktlen = self.FE.get_next_vector(flag)
fe_end = time.time()
# If the trace has ended, return -1.
# Else if this cur packet is to be processed due to sampling, proceed to the classifier.
# Else, skip the packet classification and return 0.
if pkt == -1:
rmse = -1
elif flag:
rmse = self.AnomDetector.process(pktstats)
else:
rmse = 0
ad_end = time.time()
dt = ad_end - start
dt_fe = fe_end - start
dt_ad = ad_end - fe_end
return [ pkt, rmse ], pktlen, (dt, dt_fe, dt_ad)
# return [ pkt, rmse ], pktlen, (dt, dt_fe, dt_ad), pktstats