Skip to content

Latest commit

 

History

History
177 lines (140 loc) · 4.82 KB

README.md

File metadata and controls

177 lines (140 loc) · 4.82 KB

terraform-aws-modules

This repository contains the terraform modules used for all aws resources used in the AI & ML Masters course at University of Leipzig.

Provider needs to be specified in a separate .tf-file and referenced in the module call like this (alias in this case is ffm):

providers = {
  aws = aws.ffm
}

Minimum required versions

The minimum required versions of Terraform and AWS (in this case) provider version are defined in each submodule wherever necessary in versions.tf file.

Current minimum required versions are:

  • Terraform - v1.3.0
  • AWS provider - v4.38

Add Submodule

First create a directory to start using the modules.

Add the submodules:

git submodule add https://github.com/juic3pow3rs/terraform-aws-modules.git

Create a main.tf and start using the modules. Example:

module "<module-name>" {
  source                = "./terraform-aws-modules/<module>"
  .
  .
  .
}

Setup Locals

We use locals in terraform for setting up the input variables. There are multiple ways for doing this so take this just as an advise. If you do it different it still can be fine.

locals {
  location         = "eu-central-1"
  environment      = "dev"
  project          = "ws2223"
  template_version = "0.0.1"
  team             = "andizzo"
  role             = "cloud02"
}

Modules

The next part will present the modules and how they can be used. The modules will create a ressource in your account. Be carefull to create a ressouces in your account because it will probably charge you money.

Examples

s3 Creates an s3-bucket.
module "s3_bucket" {
  source = "./terraform-aws-modules/s3"
  providers = {
    aws = aws.ffm
  }

  environment      = local.environment
  role             = local.role
  template_version = local.template_version
  team             = local.team
}
lake_formation Creates an lake formation admin, a service-linked role, registers an s3 bucket as resource and fills that bucket with some folders and a file.
module "lakeformation" {
  source = "./terraform-aws-modules/lake_formation"
  providers = {
    aws = aws.ffm
  }

  admin_user_arn = data.aws_caller_identity.current.arn
  s3_bucket_arn  = module.s3_bucket.bucket_arn
  s3_bucket_name = module.s3_bucket.bucket_name
  file_name      = "demoLakeData.csv"
  file_source    = "./demoLakeData.csv"

  environment      = local.environment
  role             = local.role
  project          = local.project
  template_version = local.template_version
  team             = local.team
}
glue_catalog Creates an glue catalog database, an glue crawler and an IAM role which the glue service can assume as well as setting lake formation permission for that role
module "glue_catalog" {
  source = "./terraform-aws-modules/glue_catalog"
  providers = {
    aws = aws.ffm
  }

  s3_bucket_name = module.s3_bucket.bucket_name
  file_name      = "demoLakeData.csv"
  folder_path    = "bronze/ingestion"

  environment      = local.environment
  role             = local.role
  project          = local.project
  template_version = local.template_version
  team             = local.team
}
sagemaker_notebook Creates a sagemaker notebook instance with a s3 bucket as data source and a github repository for storing your jupyter notebooks.
module "sagemaker_notebook" {
  source = "./terraform-aws-modules/sagemaker_notebook"
  providers = {
    aws = aws.ffm
  }

  s3_bucket_name = module.s3_bucket.bucket_name
  file_name      = "picture.png"
  file_source    = "./picture.png"
  repository_url = "https://github.com/juic3pow3rs/terraform-aws-sagemaker-notebook.git"

  environment      = local.environment
  role             = local.role
  project          = local.project
  template_version = local.template_version
  team             = local.team
}

Naming Convention

Modules with an identifier are modeled around having a naming module. Naming modules can be found in the naming directory.

${var.prefix}-${var.team_shortname}-${var.resource_shortname}-${var.role}-${var.environment}

  • team - The short name of the team responsilbe for the resource deployment

  • location - Region where the service is deployed in

  • role - Role or Scope of the Service, e.g. 'ldap' or application name like 'jenkins'

  • environment - Environment to deploy resources, e.g. 'prod', or 'dev'

  • prefix - uni (default)

  • team_shortname - aiml (change to shortname of the team)

  • resource_shortname - short name for the service

    default shortnames
    module shortname
    s3 s3
    lake_formateion lf
    glue_catalog gl_cat
    sagemaker sgm