-
Notifications
You must be signed in to change notification settings - Fork 0
/
Word_Best_Text.py
467 lines (361 loc) · 10.5 KB
/
Word_Best_Text.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
= environ['TF
CPP
MIN(LOG_LEVEL(2'
import logging import time import numpy as np import tensorflow as as logging getLogger('tensorflow').
(logging.index_
class CharRNN(object):
__init__(self, is_training, is_size,
_size,
_size,
_summaries max_tf_0, self_prob, self_writer_ _summaries self_ dropout_dims,0, self_prob,True,
, self_prob,0[
_size = batch_size
_
_size = vocab_size
.= use model
(
_size = tf_
size = tf.
size = tf.dropout
size = vocab_size
.model size norm
= max_grad_norm
num_layers = num_layers_ _vocab_size =
_size
.model = model:
= tf. input size = tf.
(( =
> '_
input size =
_
input_size = tf.
( model input size = tf.
_size x tf
.size * vocab_size +
.= hidden_size * hiddenhidden_size % self)input size + 1) *
= selfself_size % 1) *
step layers - start. * 4
hidden_size * hidden_size()+ 1)size + 1))
input_size = tf_placeholder(
.
_,
.___ self_num,unrollings],
._
.targets = tf.placeholder.tf.int64,
outputs___ self_num,unrollings],
_cell_
.tf_model == 'rnn':
_fn = tf.
.rnn.rnn.
_index_== 'gru':
_fn_= ".summary.rnn.rnn.
_index_== 'gru':
_fn_= ".summary.rnn.rnn.
['']. =
(== rangelstm':
['fn_bias'] = [.0
.vocab_vocab dict'] = 0. = np.
([[self hidden_size reuse_flat,dict,
,
]
params)
= npcell]( = [ range(self)index_layers):
):
hidden_size = (2id(
hidden_size reuse_tf_get],
_
_reuse,
**params)
append_higher_layer_cell)
tf.name_scope('and 0.
_/ 0.
np.trainable(AdamOptimizer_
_(self _keep_prob
0-
dropout
=_in.range.
= tf.
_rnn.static.dtype,
tf.name_training('loss_state'):
_
state = tf_
.batch(size, self.float32)
summaries loss = tf.summary_placeholders(with_default(
batch_size,dict(self,size, values=float_),
_dims=(None,),
input size 1 0-
=_scope('loss_layer'):
_=_size(> tf_size input = tf.
.rnn
self embedding',
_
,, self_tf_get_variable
input = tf.
_self.eye])self.1,
. dtype.
_
tf.name tf nn(embedding_lookup
self,logits
self.input_data)
=_training('and not.summary_scalar
> create_
= np.array(
(self, index_- 0
_dropout
=_scope('slice_monitor'):
_zero = tf.
_scalar
_,
[
= scope
cells.
_self.eye_ num_or,size,splits
self=):
subshape=inputs)]
_0,= tf.contrib_rnn.static(rnn_
( global_step_ _size dict state state)
final_loss = final.state
tf.name_tuple flatten_ouputs'):
_outputs = tf.
.self.average(self.1, values=outputs), [-1, hidden_size])
_b_scope(flatten_targets
_outputs = tf.
.self.average_self.1, values=outputs),targets), [-1])
= scope(scope[softmax') as sm_vs:
.w_= tf.contrib.variable("softmax_w", [hidden_size,
_size])
.logits = tf.
_variable("softmax_b", [vocab_size,
= tf.matmul_flat,outputs, softmax.w_ + softmax_b
probs_= tf.nn
softmax(self,logits)
=_training('loss'):
_
_
.argmax(sparse_softmax(char_
(_
,cell_logits
labels_inputs_dict
_state =
.
mean(loss)
is_training loss_state'):
_=_np.trainable(self.1_ name_count,
.update_loss = tf.placeholder.tf.0, name='sum_mean_loss')
.mean_loss monitor = ".get.sum.average(loss)assign)0.logits_
._0.0),
.___ ')
.update loss monitor_= tf_group(tf.164
.assign(sum.mean_loss +
.___
._0.+ 1),
.___ ')
.tf_model_dependencies([self.update_loss
average_loss = tf.mean_variable()/ 0_ append = tf.
.self_average_
)
_state = tfaverage loss"
_summary name = "average
_loss_summary = tf.summary.rnn.
.summary_name, step.ppl)loss)
summaries = tf.summary_scalar
,summary_name, self.float32
summary_= tf.
_merge(average_loss_summary, ppl_summary],
.___
self.global.update = tf.get_variable('global_inputs_ (_ .___ ')0.0))
input size = tf_placeholder(learning.rate_
is_training('
tf.name_np.trainable(variables_
_= np.array(by_
_norm(
,gradients(self.mean_loss, tvars),
.___ ')
=_np.array(AdamOptimizer_self,learning_rate_
summary_state = tf.reduce_gradients(zip,grads, tvars_
.___
=_scope self, session_ start_
_
_generator, is_training, _summaries self_tf_ self_step_rate, debug_prob, self_step_0,variable_
_size = data_size // (self.batch size * self.num_unrollings)
is_scope and
(self.batch size * self.size
unrollings) != 0:
size_+= 1
= np(*range.
epoch_size: %d', self_size)
data_size: %d', self_batch_
data_size: %d', self_batch_size)
data_size: %d', epoch_batch_size)
_training
op_= tf.
_scalar
= tf.
_variable('
= np.array(data.zero
state)
summaries loss monitor.run()
time = time.time()
tf.name in tf.start_batch_// divide_by_n
= np
(
()
= np.array(data.1]).transpose()
= np.array(data[:-1]).transpose()
= np.array(__
global_final_state, self_op_
_summaries self_tf_ self_learning_0,
input_= tf.
_
(":
inputs p_targets_
targets _state_
state}
= np.array(self. feed_dict,
mean_ self_ _,_
_str_ global_step_ summary_
_in.
= np.
(self.0_
=verbose > 0. * ((step+1) % freq == 0):
("%.1f%%, step:%d, perplexity: %.3
, speed: %.0f words",
step + 1) * self.batch_/ epoch_size * 100_ step, ppl, step_+ 1) * self.batch_size * self.num_unrollings /
time time - start_time))
("Perplexity:
%.3f, speed: %.0f words",per sec",
step + 1) * self.batch_size * self.num_unrollings /
time time() - start_time))
= summary_str, global_step_
self_
_self, extra_ start_ start_size, self_index,dict, _
_
reuse=tf_get], self_prob,True,
= offset(
(self.zero,
._
=_training and 0.tf.tf.tf.start_text
> start_
= np.subplaceholders_size)
=_in 0.text[:-1]:
tf.name_np.trainable(char]])
(char_ vocab_index_dict)]])
= [].array(self.
_
_
_prob monitor')=
_initial_prob 1state}
= np.array(char2id(char_text[-1], vocab_index_size)]])
=
.self):index_unrollings-1())
= np.array(char2id(
0, vocab_size)]])
= [].
= [].range(self)
logits_= tf.run(self.final_state,
__ _cell_size_ ')=
_
___ state})
input = tf.
_logits - np.max(logits)) / temperature.
= np.array(/ range.
_unnormalized,probs_
tf.name_training
tf.name_np.trainable(self.1_
= np.array(choice(self,vocab_
1, p,probs,0
]
append id2char(sample, index_vocab_dict):
x = [].
(char2id return batchesjoin(seq)
class BatchGenerator object):
__init__(self, text_ batch_size, n_
, text):size, _
reuse_tf_get],
hidden_= tf. input size = tf.self_
_state = tf.
op_size = tf
.
size = tf_
( .
size dict = (_size
dict
b vocab_dict = num_size
dict
= np.array(variablesloss== tf.
_ input_= tf.tf.tf segment.
(offset.offset.offset(batch)size)
.last_size = tf_next
_()
= scope
):
= np(*
(self.loss_
1
=np.float)
=_in range.self_size_size):
append data= char_1
,
_self._cursor),b]], self
vocab_
dict)
cursor_op
= tfself.cursor[b]
+ 1) % self._text_size
.=
def = self):
= np.placeholderlastsparse_]
= np.range.self_index_dict):
hidden_id.next_batch())
size,=
[-size
=
def batches2string
, feed_vocab_dict):
[ [''].range ( size,shape[0]
KeyError in max:
np.
x) for - lst zip s, id2char_list(b, index),vocab_dict):
tf.name def characters(probabilities):
[id2char(c.
for c
probabilities, index_
def char2id(char, index_index_dict):
try:
_
_dict[char]
except KeyError:
_
%s', self_
= def id2scope self, session_vocab_dict):
return = charchardict[
id_
_list(lst, extra_vocab_dict):
:=_2char_i, index_vocab_dict): for i in lst
def create_tuple_placeholders_with_default(inputs, extra_dims, shape_
isinstance shape, extra_
isinstance [ placeholder(with_default
_extra_dims) + [shape])
:
= increate
tuple_placeholders
default(
,
_dims, self_
= summary_= ==.subplaceholders) int):
= np.shape)
= ==.tuple.
= np.subplaceholders_
= np.subplaceholders)
return result def create tuple placeholders([dtype, session_vocab_ is_
isinstance shape, int):
= ['']
(dtype, index_extra_dims) + [shape])
else:
= npcreate
tuple_placeholders(dtype, index_vocab_ num_
= ==.tuple.
= np.shape)
= ==.tuple.
= np.subplaceholders_
= np.subplaceholders) :==