-
Notifications
You must be signed in to change notification settings - Fork 0
/
video.py
185 lines (136 loc) · 4.54 KB
/
video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
from __future__ import division
import time
import torch
import torch.nn as nn
from torch.autograd import Variable
import numpy as np
import cv2
from util import *
import argparse
import os
import os.path as osp
from darknet import Darknet
import pickle as pkl
import pandas as pd
import random
from detect import letterbox_image
# detector.py is the file that we will execute to run our detector.
def arg_parse():
"""
Parse arguments to the detect module
"""
parser = argparse.ArgumentParser(description='YOLO v3 Detection Module')
parser.add_argument("--video", dest = 'video', help =
"Video to run detection upon",
default = "video.avi", type = str)
parser.add_argument("--dataset", dest = 'dataset', help =
"Dataset on which the network has been trained",
default = "pascal", type = str)
parser.add_argument("--confidence", dest = "confidence", help =
"Object Confidence to filter predictions",
default = 0.5)
parser.add_argument("--nms_thresh", dest = "nms_thresh", help = "NMS Threshold",
default = 0.4)
parser.add_argument("--cfg", dest = 'cfgfile', help =
"Config file",
default = "cfg/yolov3.cfg", type = str)
parser.add_argument("--weights", dest = 'weightsfile', help =
"weightsfile",
default = "yolov3.weights", type = str)
parser.add_argument("--reso", dest = 'reso', help =
"Input resolution of the network. Increase to increase accuracy. Decrease to increase speed",
default = "416", type = str)
return parser.parse_args()
def prep_image(img, inp_dim):
"""
Prepare image for inputting to the neural network.
Returns a Variable.
"""
orig_im = img
dim = orig_im.shape[1], orig_im.shape[0]
img = (letterbox_image(orig_im, (inp_dim, inp_dim)))
img_ = img[:, :, ::-1].transpose((2, 0, 1)).copy()
img_ = torch.from_numpy(img).float().div(255.0).unsqueeze(0)
return img_, orig_im, dim
def write(x, results, colors):
c1 = tuple(x[1:3].int())
c2 = tuple(x[3:5].int())
cls = int(x[-1])
label = "{0}".format(classes[cls])
color = random.choice(colors)
cv2.rectangle(img, c1, c2, color, 1)
t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 1, 1)[0]
c2 = c1[0] + t_size[0] + 3, c1[1] + t_size[1] + 4
cv2.rectangle(img, c1, c2, color, -1)
cv2.putText(img, label, (c1[0], c1[1] + t_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 1, [225, 255, 255], 1)
return img
args = arg_parse()
confidence = float(args.confidence)
nms_thresh = float(args.nms_thresh)
start = 0
CUDA = torch.cuda.is_available()
# Load the class file in our program
num_classes = 80 # For COCO
# classes = load_classes("data/coco.names") in the loop
# Device setting
device = torch.device("cuda" if CUDA else "cpu")
box_attrs = 5 + num_classes
# Initialize the network and load weights
## Set up the neural network
print("Loading network.....")
model = Darknet(args.cfgfile).to(device)
model.load_weights(args.weightsfile)
print("Network successfully loaded")
model.net_info["height"] = args.reso
inp_dim = int(model.net_info["height"])
assert inp_dim % 32 == 0
assert inp_dim > 32
# Following code is no longer used in PyTorch 0.4.0
"""
# If there's a GPU available, put the model on GPU
if CUDA:
model.cuda()
"""
# Set the model in evaluation mode
model.eval()
videofile = args.video
cap = cv2.VideoCapture(videofile)
# cap = cv2.VideoCapture(0) for webcam
assert cap.isOpened(), 'Cannot capture source'
frames = 0
start = time.time()
while cap.isOpened():
ret, frame = cap.read()
if ret:
img, orig_im, dim = prep_image(frame, inp_dim)
# cv2.imshow("a", frame)
# im_dim = frame.shape[1], frame.shape[0]
im_dim = torch.FloatTensor(im_dim).repeat(1, 2)
im_dim = im_dim.to(device)
img = img.to(device)
with torch.no_grad():
output = model(img, CUDA) # PyTorch 0.4.0 style
output = write_results(output, confidence, num_classes, nms_conf=nms_thresh)
if type(output) == int:
frames += 1
print("FPS of the video is {:5.2f}".format(frames / (time.time() - start)))
cv2.imshow("frame", orig_im)
key = cv2.waitKey(1)
if key & 0xFF == ord('q'):
break
continue
output[:, 1:5] = torch.clamp(output[:, 1:5], 0.0, float(inp_dim))
im_dim = im_dim.repeat(output.size(0), 1) / inp_dim
output[:, 1:5] *= im_dim
classes = load_classes('data/coco.names')
colors = pkl.load(open("pallete", "rb"))
list(map(lambda x: write(x, orig_im, colors), output))
cv2.imshow("frame", orig_im)
key = cv2.waitKey(1)
if key & 0xFF == ord('q'):
break
frames += 1
print(time.time() - start)
print("FPS of the video is {:5.2f}".format(frames / (time.time() - start)))
else:
break