tags: Array, Binary Search
#LeetCode 81 Search in Rotated Sorted Array II
Follow up for "Search in Rotated Sorted Array"
:
What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given target is in the array. (return true
if exists otherwise false
)
Diffculty
Medium
Similar Problems
[LeetCode 33] Search in Rotated Sorted Array
This is similar to the problem Search in Rotated Sorted Array
, the only place that we need to modify is when nums[mid] == nums[low]
,
we should set low++, in this case, we aren't be able to know whether the part is in order, consider :
1 1 1 3 1
^ ^
low mid
1 3 1 1 1
^ ^
low mid
As show above, when nums[mid] == nums[low]
, we can't be sure which part is in order, so we just increase low.
The time complexity will be up to O(n) in worst case (all numbers are equal).
1. Cpp Solution
class Solution {
public:
int search(vector<int> &nums, int target) {
int low = 0, high = nums.size() - 1;
while (low <= high) {
const int mid = low + (high - low) / 2;
if (nums[mid] == target)
return true;
if (nums[low] == nums[mid]) { // Important
low++;
} else if (nums[low] < nums[mid]) {
if (nums[low] <= target && target < nums[mid])
high = mid - 1;
else
low = mid + 1;
} else {
if (nums[mid] < target && target <= nums[high])
low = mid + 1;
else
high = mid - 1;
}
}
return false;
}
};
2. Go Solution
func search(nums []int, target int) bool {
low, high := 0, len(nums)-1
for low <= high {
mid := low + (high-low)/2
if nums[mid] == target {
return true
} else {
if nums[low] == nums[mid] {
low += 1
} else if nums[low] < nums[mid] {
if nums[low] <= target && target < nums[mid] {
high = mid - 1
} else {
low = mid + 1
}
} else {
if nums[mid] < target && target <= nums[high] {
low = mid + 1
} else {
high = mid - 1
}
}
}
}
return false
}