-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsac.py
131 lines (122 loc) · 3.89 KB
/
sac.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import argparse
from rlkit.envs import ENVS
import rlkit.torch.pytorch_util as ptu
from rlkit.data_management.env_replay_buffer import EnvReplayBuffer
from rlkit.envs.wrappers import NormalizedBoxEnv
from rlkit.launchers.launcher_util import setup_logger
from rlkit.samplers.data_collector import MdpPathCollector
from rlkit.torch.sac.policies import TanhGaussianPolicy, MakeDeterministic
from rlkit.torch.sac.sac import SACTrainer
from rlkit.torch.networks import ConcatMlp
from rlkit.torch.torch_rl_algorithm import TorchBatchRLAlgorithm
def experiment(variant):
expl_env = NormalizedBoxEnv(ENVS[variant['env_name']]())
eval_env = NormalizedBoxEnv(ENVS[variant['env_name']]())
obs_dim = expl_env.observation_space.low.size
action_dim = eval_env.action_space.low.size
M = variant['layer_size']
qf1 = ConcatMlp(
input_size=obs_dim + action_dim,
output_size=1,
hidden_sizes=[M, M],
)
qf2 = ConcatMlp(
input_size=obs_dim + action_dim,
output_size=1,
hidden_sizes=[M, M],
)
target_qf1 = ConcatMlp(
input_size=obs_dim + action_dim,
output_size=1,
hidden_sizes=[M, M],
)
target_qf2 = ConcatMlp(
input_size=obs_dim + action_dim,
output_size=1,
hidden_sizes=[M, M],
)
policy = TanhGaussianPolicy(
obs_dim=obs_dim,
action_dim=action_dim,
hidden_sizes=[M, M],
)
eval_policy = MakeDeterministic(policy)
eval_path_collector = MdpPathCollector(
eval_env,
eval_policy,
)
expl_path_collector = MdpPathCollector(
expl_env,
policy,
)
replay_buffer = EnvReplayBuffer(
variant['replay_buffer_size'],
expl_env,
)
trainer = SACTrainer(
env=eval_env,
policy=policy,
qf1=qf1,
qf2=qf2,
target_qf1=target_qf1,
target_qf2=target_qf2,
**variant['trainer_kwargs']
)
algorithm = TorchBatchRLAlgorithm(
trainer=trainer,
exploration_env=expl_env,
evaluation_env=eval_env,
exploration_data_collector=expl_path_collector,
evaluation_data_collector=eval_path_collector,
replay_buffer=replay_buffer,
**variant['algorithm_kwargs']
)
algorithm.to(ptu.device)
algorithm.train()
if __name__ == "__main__":
# noinspection PyTypeChecker
parser = argparse.ArgumentParser(description='SAC-runs')
parser.add_argument("--env", type=str, default='HalfCheetah-Fwd')
args = parser.parse_args()
variant = dict(
algorithm="SAC",
version="normal",
layer_size=256,
replay_buffer_size=int(1E6),
env_name=args.env,
algorithm_kwargs=dict(
num_epochs=2000,
num_eval_steps_per_epoch=5000,
num_trains_per_train_loop=1000,
num_expl_steps_per_train_loop=1000,
min_num_steps_before_training=1000,
max_path_length=1000,
batch_size=256,
),
trainer_kwargs=dict(
discount=0.99,
soft_target_tau=5e-3,
target_update_period=1,
policy_lr=3E-4,
qf_lr=3E-4,
reward_scale=1,
use_automatic_entropy_tuning=True,
),
)
setup_logger(exp_prefix='SAC-' + args.env,
variant=variant,
text_log_file="debug.log",
variant_log_file="variant.json",
tabular_log_file="progress.csv",
snapshot_mode="gap_and_last",
snapshot_gap=200,
log_tabular_only=False,
log_dir=None,
git_infos=None,
script_name=None,
# **create_log_dir_kwargs
base_log_dir='./data',
exp_id=0,
seed=0)
ptu.set_gpu_mode(True) # optionally set the GPU (default=False)
experiment(variant)