-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtd3.py
126 lines (119 loc) · 3.78 KB
/
td3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
"""
This should results in an average return of ~3000 by the end of training.
Usually hits 3000 around epoch 80-100. Within a see, the performance will be
a bit noisy from one epoch to the next (occasionally dips dow to ~2000).
Note that one epoch = 5k steps, so 200 epochs = 1 million steps.
"""
from gym.envs.mujoco import HalfCheetahEnv
import rlkit.torch.pytorch_util as ptu
from rlkit.data_management.env_replay_buffer import EnvReplayBuffer
from rlkit.envs.wrappers import NormalizedBoxEnv
from rlkit.exploration_strategies.base import \
PolicyWrappedWithExplorationStrategy
from rlkit.exploration_strategies.gaussian_strategy import GaussianStrategy
from rlkit.launchers.launcher_util import setup_logger
from rlkit.samplers.data_collector import MdpPathCollector
from rlkit.torch.networks import ConcatMlp, TanhMlpPolicy
from rlkit.torch.td3.td3 import TD3Trainer
from rlkit.torch.torch_rl_algorithm import TorchBatchRLAlgorithm
def experiment(variant):
expl_env = NormalizedBoxEnv(HalfCheetahEnv())
eval_env = NormalizedBoxEnv(HalfCheetahEnv())
obs_dim = expl_env.observation_space.low.size
action_dim = expl_env.action_space.low.size
qf1 = ConcatMlp(
input_size=obs_dim + action_dim,
output_size=1,
**variant['qf_kwargs']
)
qf2 = ConcatMlp(
input_size=obs_dim + action_dim,
output_size=1,
**variant['qf_kwargs']
)
target_qf1 = ConcatMlp(
input_size=obs_dim + action_dim,
output_size=1,
**variant['qf_kwargs']
)
target_qf2 = ConcatMlp(
input_size=obs_dim + action_dim,
output_size=1,
**variant['qf_kwargs']
)
policy = TanhMlpPolicy(
input_size=obs_dim,
output_size=action_dim,
**variant['policy_kwargs']
)
target_policy = TanhMlpPolicy(
input_size=obs_dim,
output_size=action_dim,
**variant['policy_kwargs']
)
es = GaussianStrategy(
action_space=expl_env.action_space,
max_sigma=0.1,
min_sigma=0.1, # Constant sigma
)
exploration_policy = PolicyWrappedWithExplorationStrategy(
exploration_strategy=es,
policy=policy,
)
eval_path_collector = MdpPathCollector(
eval_env,
policy,
)
expl_path_collector = MdpPathCollector(
expl_env,
exploration_policy,
)
replay_buffer = EnvReplayBuffer(
variant['replay_buffer_size'],
expl_env,
)
trainer = TD3Trainer(
policy=policy,
qf1=qf1,
qf2=qf2,
target_qf1=target_qf1,
target_qf2=target_qf2,
target_policy=target_policy,
**variant['trainer_kwargs']
)
algorithm = TorchBatchRLAlgorithm(
trainer=trainer,
exploration_env=expl_env,
evaluation_env=eval_env,
exploration_data_collector=expl_path_collector,
evaluation_data_collector=eval_path_collector,
replay_buffer=replay_buffer,
**variant['algorithm_kwargs']
)
algorithm.to(ptu.device)
algorithm.train()
if __name__ == "__main__":
variant = dict(
algorithm_kwargs=dict(
num_epochs=3000,
num_eval_steps_per_epoch=5000,
num_trains_per_train_loop=1000,
num_expl_steps_per_train_loop=1000,
min_num_steps_before_training=1000,
max_path_length=1000,
batch_size=256,
),
trainer_kwargs=dict(
discount=0.99,
),
qf_kwargs=dict(
hidden_sizes=[400, 300],
),
policy_kwargs=dict(
hidden_sizes=[400, 300],
),
replay_buffer_size=int(1E6),
)
# ptu.set_gpu_mode(True) # optionally set the GPU (default=False)
setup_logger('rlkit-post-refactor-td3-half-cheetah', variant=variant)
experiment(variant)