-
Notifications
You must be signed in to change notification settings - Fork 0
/
create_sentiment_featuresets.py
85 lines (62 loc) · 2.03 KB
/
create_sentiment_featuresets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import nltk
from nltk.tokenize import word_tokenize
import numpy as np
import random
import pickle
from collections import Counter
from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
hm_lines = 100000
def create_lexicon(pos,neg):
lexicon = []
with open(pos,'r') as f:
contents = f.readlines()
for l in contents[:hm_lines]:
all_words = word_tokenize(l)
lexicon += list(all_words)
with open(neg,'r') as f:
contents = f.readlines()
for l in contents[:hm_lines]:
all_words = word_tokenize(l)
lexicon += list(all_words)
lexicon = [lemmatizer.lemmatize(i) for i in lexicon]
w_counts = Counter(lexicon)
l2 = []
for w in w_counts:
#print(w_counts[w])
if 1000 > w_counts[w] > 50:
l2.append(w)
print(len(l2))
return l2
def sample_handling(sample,lexicon,classification):
featureset = []
with open(sample,'r') as f:
contents = f.readlines()
for l in contents[:hm_lines]:
current_words = word_tokenize(l.lower())
current_words = [lemmatizer.lemmatize(i) for i in current_words]
features = np.zeros(len(lexicon))
for word in current_words:
if word.lower() in lexicon:
index_value = lexicon.index(word.lower())
features[index_value] += 1
features = list(features)
featureset.append([features,classification])
return featureset
def create_feature_sets_and_labels(pos,neg,test_size = 0.1):
lexicon = create_lexicon(pos,neg)
features = []
features += sample_handling('pos.txt',lexicon,[1,0])
features += sample_handling('neg.txt',lexicon,[0,1])
random.shuffle(features)
features = np.array(features)
testing_size = int(test_size*len(features))
train_x = list(features[:,0][:-testing_size])
train_y = list(features[:,1][:-testing_size])
test_x = list(features[:,0][-testing_size:])
test_y = list(features[:,1][-testing_size:])
return train_x,train_y,test_x,test_y
if __name__ == '__main__':
train_x,train_y,test_x,test_y = create_feature_sets_and_labels('pos.txt','neg.txt')
with open('sentiment_set.pickle','wb') as f:
pickle.dump([train_x,train_y,test_x,test_y],f)