forked from mlresearch/v178
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_config.yml
82 lines (79 loc) · 1.72 KB
/
_config.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
booktitle: Proceedings of Thirty Fifth Conference on Learning Theory
shortname: COLT
volume: '178'
year: '2022'
start: 2022-07-02
end: 2022-07-05
published: 2022-06-28
conference_number: '35'
layout: proceedings
series: Proceedings of Machine Learning Research
publisher: PMLR
issn: 2640-3498
id: COLT2022
month: 0
cycles: false
bibtex_editor: Loh, Po-Ling and Raginsky, Maxim
editor:
- given: Po-Ling
family: Loh
- given: Maxim
family: Raginsky
title: Proceedings of Machine Learning Research
description: |
Proceedings of Thirty Fifth Conference on Learning Theory
Held in London, UK on 02-05 July 2022
Published as Volume 178 by the Proceedings of Machine Learning Research on 28 June 2022.
Volume Edited by:
Po-Ling Loh
Maxim Raginsky
Series Editors:
Neil D. Lawrence
date_str: 02--05 Jul
url: https://proceedings.mlr.press
author:
name: PMLR
baseurl: "/v178"
twitter_username: MLResearchPress
github_username: mlresearch
markdown: kramdown
exclude:
- README.md
- Gemfile
- ".gitignore"
plugins:
- jekyll-feed
- jekyll-seo-tag
- jekyll-remote-theme
remote_theme: lawrennd/proceedings
style: pmlr
permalink: "/:title.html"
ghub:
edit: true
repository: v178
display:
copy_button:
bibtex: true
endnote: true
apa: true
comments: false
volume_type: Volume
volume_dir: v178
email: ''
conference:
name: Conference on Learning Theory
url: http://www.learningtheory.org/colt2022/index.html
location: London, UK
dates:
- 2022-07-02
- 2022-07-03
- 2022-07-04
- 2022-07-05
analytics:
google:
tracking_id: UA-92432422-1
orig_bibfile: "/Users/neil/mlresearch/v178/COLT2022_bibliography.bib"
future: True
# Site settings
# Original source: /Users/neil/mlresearch/v178/COLT2022_bibliography.bib