title | abstract | layout | series | publisher | issn | id | month | tex_title | firstpage | lastpage | page | order | cycles | bibtex_author | author | date | address | container-title | volume | genre | issued | extras | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Strong Gaussian Approximation for the Sum of Random Vectors |
This paper derives a new strong Gaussian approximation bound for the sum of independent random vectors. The approach relies on the optimal transport theory and yields explicit dependence on the dimension size p and the sample size n. This dependence establishes a new fundamental limit for all practical applications of statistical learning theory. Particularly, based on this bound, we prove approximation in distribution for the maximum norm in a high-dimensional setting (p > n). |
inproceedings |
Proceedings of Machine Learning Research |
PMLR |
2640-3498 |
buzun22a |
0 |
Strong Gaussian Approximation for the Sum of Random Vectors |
1693 |
1715 |
1693-1715 |
1693 |
false |
Buzun, Nazar and Shvetsov, Nikolay and Dylov, Dmitry V. |
|
2022-06-28 |
Proceedings of Thirty Fifth Conference on Learning Theory |
178 |
inproceedings |
|