title | abstract | layout | series | publisher | issn | id | month | tex_title | firstpage | lastpage | page | order | cycles | bibtex_author | author | date | address | container-title | volume | genre | issued | extras | |||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A Private and Computationally-Efficient Estimator for Unbounded Gaussians |
We give the first polynomial-time, polynomial-sample, differentially private estimator for the mean and covariance of an arbitrary Gaussian distribution |
inproceedings |
Proceedings of Machine Learning Research |
PMLR |
2640-3498 |
kamath22a |
0 |
A Private and Computationally-Efficient Estimator for Unbounded Gaussians |
544 |
572 |
544-572 |
544 |
false |
Kamath, Gautam and Mouzakis, Argyris and Singhal, Vikrant and Steinke, Thomas and Ullman, Jonathan |
|
2022-06-28 |
Proceedings of Thirty Fifth Conference on Learning Theory |
178 |
inproceedings |
|