-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinearRegCostFunction.m
42 lines (26 loc) · 1.14 KB
/
linearRegCostFunction.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
function [J, grad] = linearRegCostFunction(X, y, theta, lambda)
%LINEARREGCOSTFUNCTION Compute cost and gradient for regularized linear
%regression with multiple variables
% [J, grad] = LINEARREGCOSTFUNCTION(X, y, theta, lambda) computes the
% cost of using theta as the parameter for linear regression to fit the
% data points in X and y. Returns the cost in J and the gradient in grad
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly
J = 0;
grad = zeros(size(theta));
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost and gradient of regularized linear
% regression for a particular choice of theta.
%
% You should set J to the cost and grad to the gradient.
%
vec = X*theta-y;
J = (1/(2*m)) * vec' * vec;
nobias_theta = theta;
nobias_theta(1) = 0;
J = J + (lambda/(2*m)) * nobias_theta' * nobias_theta;
grad = (1/m) * (X' * vec) + (lambda/m) * nobias_theta;
% =========================================================================
grad = grad(:);
end