-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdictTrainCompDCT.m
139 lines (112 loc) · 3.62 KB
/
dictTrainCompDCT.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
start_spams
clear
clc
% % % % % % % % % % % % % % % % % % % % % % % % % % %
% Prepare raw data
% % % % % % % % % % % % % % % % % % % % % % % % % % %
RawInpLoad = load('15814m_ltdbECG_1h.mat');
RawInpLoad = RawInpLoad.val;
n_dl = 128;
epochs = floor(length(RawInpLoad) / n_dl); % 4517
RawInpLoad = RawInpLoad(1:n_dl * epochs);
RawInp = RawInpLoad(1:n_dl*epochs);
RawInp = reshape(RawInp , n_dl, epochs);
crossValidFactor = 0.7;
TrainInp = RawInp(:, 1:floor(epochs*crossValidFactor));
wt = dctmtx(n_dl);
TrainInpDCT = wt * TrainInp;
TrainInpDCT = TrainInpDCT - repmat(mean(TrainInpDCT),[size(TrainInpDCT,1),1]);
TrainInpDCT = TrainInpDCT ./ repmat(sqrt(sum(TrainInpDCT.^2)),[size(TrainInpDCT,1),1]);
TestInp = RawInp(:, (size(TrainInpDCT,2)+1):epochs);
TestInp = TestInp - repmat(mean(TestInp),[size(TestInp,1),1]);
TestInp = TestInp ./ repmat(sqrt(sum(TestInp.^2)),[size(TestInp,1),1]);
% % % % % % % % % % % % % % % % % % % % % % % % % % %
% Setting parameters for training
% % % % % % % % % % % % % % % % % % % % % % % % % % %
param.K = 512;
param.lambda = 0.1; % sparsity constraint
param.numThreads = -1;
param.batchsize = 50;
param.verbose = false;
param.batchsize = 50;
param.iter = 60;
param.clean = false;
param.iter_updateD = 1;
% param.verbose = true;
% % % % % % % % % % % % % % % % % % % % % % % % % % %
% DL & CS
% % % % % % % % % % % % % % % % % % % % % % % % % % %
m_dl = floor(n_dl / 10);
phi_dl = randn(m_dl,n_dl);
reconSig = cell(1,50);
alpha = cell(1,50);
R1 = cell(1,50);
R2 = cell(1,50);
R3 = cell(1,50);
samplesTrain = size(TrainInpDCT,2);
samplesTest = size(TestInp,2);
rsnr_dl = zeros(1,length(1:floor(samplesTrain /50)));
res_dl = zeros(1,length(1:floor(samplesTrain /50)));
sparsity_dl = zeros(1,length(1:floor(samplesTrain /50)));
prd_dl = zeros(1,length(1:floor(samplesTrain /50)));
for i = 1 : floor(samplesTrain / 50) % adjust iter
res = 0;
x2 = 0;
spar = 0;
prd = 0;
y_dl = [];
xs_dl = [];
x0_dl = [];
xhat_dl = [];
param.iter = i;
epochesD = floor(i * param.batchsize);
X = TrainInpDCT(:,1:epochesD);
D = mexTrainDL(X,param);
alpha{i} = mexLasso(X,D,param);
R1{i} = mean(0.5*sum((X-D*alpha{i}).^2) + param.lambda*sum(abs(alpha{i})));
R2{i} = mean(0.5*sum(X-D*alpha{i}).^2);
R3{i} = mean(param.lambda*sum(abs(alpha{i})));
fprintf('Objective function for i=%d is %f\n', i, R1{i});
psi_dl = D;
A_dl = phi_dl * wt' * psi_dl;
for ep = 1:samplesTest
y_dl = phi_dl * TestInp(:,ep);
x0_dl = pinv(A_dl) * y_dl;
xs_dl = l1eq_pd(x0_dl, A_dl, [], y_dl, 1e-6, 50);
xhat_dl = wt' * psi_dl * xs_dl;
reconSig{i}(:,ep) = {xhat_dl};
res = res + sum(norm(TestInp(:,ep) - xhat_dl).^2);
x2 = x2 + sum(TestInp(:,ep).^2);
spar = spar + length(find(abs(xs_dl)>0.001) );
end
rsnr_dl(i) = 20 * log10(sqrt(x2 / res));
cr_dl = n_dl / m_dl;
sparsity_dl(i) = 1 - spar / samplesTest / length(xs_dl);
prd_dl(i) = sqrt(res / x2);
end
subplot(211)
plot(TestInp(:,ep));
subplot(212)
plot(xhat_dl);
%
filename = sprintf('./Results/reconProcess_DCT_batchsize%d_lambda%d.mat', param.batchsize, param.lambda);
save(filename)
%%
delay = 0.1;
writerObj = VideoWriter('./Results/reconstruction.avi');
writerObj.FrameRate = 5;
open(writerObj);
fig = figure('units','normalized','outerposition',[0 0 1 1]);
plot(TestInp(:,1));
hold on
for i = 1 : 50
reconSigMat = cell2mat(reconSig{i}(:,10));
h = plot(1:n_dl,reconSigMat);
axis([1 n_dl -0.3 0.2]);
% hold on
frame = getframe(fig);
writeVideo(writerObj,frame);
pause(delay);
delete(h);
end
close(writerObj);