forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mnist_tpu.py
202 lines (165 loc) · 7.38 KB
/
mnist_tpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""MNIST model training using TPUs.
This program demonstrates training of the convolutional neural network model
defined in mnist.py on Google Cloud TPUs (https://cloud.google.com/tpu/).
If you are not interested in TPUs, you should ignore this file.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import tensorflow as tf # pylint: disable=g-bad-import-order
# For open source environment, add grandparent directory for import
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(sys.path[0]))))
from official.mnist import dataset # pylint: disable=wrong-import-position
from official.mnist import mnist # pylint: disable=wrong-import-position
# Cloud TPU Cluster Resolver flags
tf.flags.DEFINE_string(
"tpu", default=None,
help="The Cloud TPU to use for training. This should be either the name "
"used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 "
"url.")
tf.flags.DEFINE_string(
"tpu_zone", default=None,
help="[Optional] GCE zone where the Cloud TPU is located in. If not "
"specified, we will attempt to automatically detect the GCE project from "
"metadata.")
tf.flags.DEFINE_string(
"gcp_project", default=None,
help="[Optional] Project name for the Cloud TPU-enabled project. If not "
"specified, we will attempt to automatically detect the GCE project from "
"metadata.")
# Model specific parameters
tf.flags.DEFINE_string("data_dir", "",
"Path to directory containing the MNIST dataset")
tf.flags.DEFINE_string("model_dir", None, "Estimator model_dir")
tf.flags.DEFINE_integer("batch_size", 1024,
"Mini-batch size for the training. Note that this "
"is the global batch size and not the per-shard batch.")
tf.flags.DEFINE_integer("train_steps", 1000, "Total number of training steps.")
tf.flags.DEFINE_integer("eval_steps", 0,
"Total number of evaluation steps. If `0`, evaluation "
"after training is skipped.")
tf.flags.DEFINE_float("learning_rate", 0.05, "Learning rate.")
tf.flags.DEFINE_bool("use_tpu", True, "Use TPUs rather than plain CPUs")
tf.flags.DEFINE_bool("enable_predict", True, "Do some predictions at the end")
tf.flags.DEFINE_integer("iterations", 50,
"Number of iterations per TPU training loop.")
tf.flags.DEFINE_integer("num_shards", 8, "Number of shards (TPU chips).")
FLAGS = tf.flags.FLAGS
def metric_fn(labels, logits):
accuracy = tf.metrics.accuracy(
labels=labels, predictions=tf.argmax(logits, axis=1))
return {"accuracy": accuracy}
def model_fn(features, labels, mode, params):
"""model_fn constructs the ML model used to predict handwritten digits."""
del params
image = features
if isinstance(image, dict):
image = features["image"]
model = mnist.create_model("channels_last")
if mode == tf.estimator.ModeKeys.PREDICT:
logits = model(image, training=False)
predictions = {
'class_ids': tf.argmax(logits, axis=1),
'probabilities': tf.nn.softmax(logits),
}
return tf.contrib.tpu.TPUEstimatorSpec(mode, predictions=predictions)
logits = model(image, training=(mode == tf.estimator.ModeKeys.TRAIN))
loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
if mode == tf.estimator.ModeKeys.TRAIN:
learning_rate = tf.train.exponential_decay(
FLAGS.learning_rate,
tf.train.get_global_step(),
decay_steps=100000,
decay_rate=0.96)
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
if FLAGS.use_tpu:
optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer)
return tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=loss,
train_op=optimizer.minimize(loss, tf.train.get_global_step()))
if mode == tf.estimator.ModeKeys.EVAL:
return tf.contrib.tpu.TPUEstimatorSpec(
mode=mode, loss=loss, eval_metrics=(metric_fn, [labels, logits]))
def train_input_fn(params):
"""train_input_fn defines the input pipeline used for training."""
batch_size = params["batch_size"]
data_dir = params["data_dir"]
# Retrieves the batch size for the current shard. The # of shards is
# computed according to the input pipeline deployment. See
# `tf.contrib.tpu.RunConfig` for details.
ds = dataset.train(data_dir).cache().repeat().shuffle(
buffer_size=50000).apply(
tf.contrib.data.batch_and_drop_remainder(batch_size))
images, labels = ds.make_one_shot_iterator().get_next()
return images, labels
def eval_input_fn(params):
batch_size = params["batch_size"]
data_dir = params["data_dir"]
ds = dataset.test(data_dir).apply(
tf.contrib.data.batch_and_drop_remainder(batch_size))
images, labels = ds.make_one_shot_iterator().get_next()
return images, labels
def predict_input_fn(params):
batch_size = params["batch_size"]
data_dir = params["data_dir"]
# Take out top 10 samples from test data to make the predictions.
ds = dataset.test(data_dir).take(10).batch(batch_size)
return ds
def main(argv):
del argv # Unused.
tf.logging.set_verbosity(tf.logging.INFO)
tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
FLAGS.tpu,
zone=FLAGS.tpu_zone,
project=FLAGS.gcp_project
)
run_config = tf.contrib.tpu.RunConfig(
cluster=tpu_cluster_resolver,
model_dir=FLAGS.model_dir,
session_config=tf.ConfigProto(
allow_soft_placement=True, log_device_placement=True),
tpu_config=tf.contrib.tpu.TPUConfig(FLAGS.iterations, FLAGS.num_shards),
)
estimator = tf.contrib.tpu.TPUEstimator(
model_fn=model_fn,
use_tpu=FLAGS.use_tpu,
train_batch_size=FLAGS.batch_size,
eval_batch_size=FLAGS.batch_size,
predict_batch_size=FLAGS.batch_size,
params={"data_dir": FLAGS.data_dir},
config=run_config)
# TPUEstimator.train *requires* a max_steps argument.
estimator.train(input_fn=train_input_fn, max_steps=FLAGS.train_steps)
# TPUEstimator.evaluate *requires* a steps argument.
# Note that the number of examples used during evaluation is
# --eval_steps * --batch_size.
# So if you change --batch_size then change --eval_steps too.
if FLAGS.eval_steps:
estimator.evaluate(input_fn=eval_input_fn, steps=FLAGS.eval_steps)
# Run prediction on top few samples of test data.
if FLAGS.enable_predict:
predictions = estimator.predict(input_fn=predict_input_fn)
for pred_dict in predictions:
template = ('Prediction is "{}" ({:.1f}%).')
class_id = pred_dict['class_ids']
probability = pred_dict['probabilities'][class_id]
print(template.format(class_id, 100 * probability))
if __name__ == "__main__":
tf.app.run()