forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model_utils.py
110 lines (87 loc) · 3.63 KB
/
model_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Transformer model helper methods."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import tensorflow as tf
_NEG_INF = -1e9
def get_position_encoding(
length, hidden_size, min_timescale=1.0, max_timescale=1.0e4):
"""Return positional encoding.
Calculates the position encoding as a mix of sine and cosine functions with
geometrically increasing wavelengths.
Defined and formulized in Attention is All You Need, section 3.5.
Args:
length: Sequence length.
hidden_size: Size of the
min_timescale: Minimum scale that will be applied at each position
max_timescale: Maximum scale that will be applied at each position
Returns:
Tensor with shape [length, hidden_size]
"""
position = tf.to_float(tf.range(length))
num_timescales = hidden_size // 2
log_timescale_increment = (
math.log(float(max_timescale) / float(min_timescale)) /
(tf.to_float(num_timescales) - 1))
inv_timescales = min_timescale * tf.exp(
tf.to_float(tf.range(num_timescales)) * -log_timescale_increment)
scaled_time = tf.expand_dims(position, 1) * tf.expand_dims(inv_timescales, 0)
signal = tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=1)
return signal
def get_decoder_self_attention_bias(length):
"""Calculate bias for decoder that maintains model's autoregressive property.
Creates a tensor that masks out locations that correspond to illegal
connections, so prediction at position i cannot draw information from future
positions.
Args:
length: int length of sequences in batch.
Returns:
float tensor of shape [1, 1, length, length]
"""
with tf.name_scope("decoder_self_attention_bias"):
valid_locs = tf.matrix_band_part(tf.ones([length, length]), -1, 0)
valid_locs = tf.reshape(valid_locs, [1, 1, length, length])
decoder_bias = _NEG_INF * (1.0 - valid_locs)
return decoder_bias
def get_padding(x, padding_value=0):
"""Return float tensor representing the padding values in x.
Args:
x: int tensor with any shape
padding_value: int value that
Returns:
flaot tensor with same shape as x containing values 0 or 1.
0 -> non-padding, 1 -> padding
"""
with tf.name_scope("padding"):
return tf.to_float(tf.equal(x, padding_value))
def get_padding_bias(x):
"""Calculate bias tensor from padding values in tensor.
Bias tensor that is added to the pre-softmax multi-headed attention logits,
which has shape [batch_size, num_heads, length, length]. The tensor is zero at
non-padding locations, and -1e9 (negative infinity) at padding locations.
Args:
x: int tensor with shape [batch_size, length]
Returns:
Attention bias tensor of shape [batch_size, 1, 1, length].
"""
with tf.name_scope("attention_bias"):
padding = get_padding(x)
attention_bias = padding * _NEG_INF
attention_bias = tf.expand_dims(
tf.expand_dims(attention_bias, axis=1), axis=1)
return attention_bias