-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenetic_algorithm_fixed_size.py
79 lines (69 loc) · 2.86 KB
/
genetic_algorithm_fixed_size.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import utils
import random
import time
import copy
class FixedSizeAgent:
def __init__(self, size, subset=None):
self.size = size
if subset is None:
alphabet = utils.alphabet()
subset = ""
while len(subset) < self.size:
subset += list(alphabet).pop(random.randint(0, len(alphabet) - 1))
self.subset = list(subset)
self.not_subset = list(filter(lambda x: x not in self.subset, utils.alphabet()))
def get_letter_list(self):
return "".join(self.subset)
def mutate(self):
if self.size == len(utils.alphabet()):
return self
letter_to_add = self.not_subset.pop(random.randint(0, len(self.not_subset) - 1))
letter_to_remove = self.subset.pop(random.randint(0, len(self.subset) - 1))
self.not_subset += letter_to_remove
self.subset += letter_to_add
return self
def do_genetic_algorithm(bitfields, num_agents, iterations, size):
if size==len(utils.alphabet()):
return utils.alphabet(), len(bitfields)/len(utils.alphabet())
cache_capacity=500
min_agents = 2
start_time = time.time()
# verify inputs
if num_agents < min_agents:
raise ValueError("too few agents")
#thing
cache=utils.LRUCache(cache_capacity)
def sorting_key(a):
return utils.get_num_of_words_by_subset_with_cache(cache, a.get_letter_list(), bitfields) / len(a.get_letter_list())
best_score=0
best_letters=""
# generate agents
agents = []
for _ in range(num_agents):
agents.append(FixedSizeAgent(size))
for iter_num in range(iterations):
iteration_start_time=time.time()
#sort agents by score
agents.sort(key=sorting_key, reverse=True)
best_score = sorting_key(agents[0])
best_letters = agents[0].get_letter_list()
#murder random agents, more likely to murder underperforming ones
agents_to_remove = []
for i in range(len(agents)):
if random.random() > (1-i/num_agents):
agents_to_remove.append(agents[i])
for agent in agents_to_remove:
agents.remove(agent)
#refill array
new_agents = []
num_new_agents_needed = num_agents - len(agents)
print(num_new_agents_needed)
while num_new_agents_needed > 0:
new_agents.append(copy.deepcopy(random.choice(agents)).mutate())
num_new_agents_needed -= 1
agents += new_agents
print(f"Finished iteration {iter_num}/{iterations} with {num_agents} agents. \nbest score so far: {best_score}, with letters {best_letters}")
print(f"Time since start: {time.time()-start_time}s")
print(f"Time since last iteration: {time.time()-iteration_start_time}s")
agents.sort(key=sorting_key, reverse=True)
return agents[0].get_letter_list(), best_score