-
Notifications
You must be signed in to change notification settings - Fork 46
/
test_yolov3.py
96 lines (72 loc) · 3.34 KB
/
test_yolov3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import os
import time
import cv2
import numpy as np
import tensorflow as tf
from keras import backend as K
from keras.models import load_model
from yolov3.model import yolo_eval
from utils.yolo_utils import *
def image_detection(sess, image_path, image_file, colors):
# Preprocess your image
image, image_data = preprocess_image(image_path + image_file, model_image_size = (416, 416))
# Run the session with the correct tensors and choose the correct placeholders in the feed_dict.
# You'll need to use feed_dict={yolo_model.input: ... , K.learning_phase(): 0})
out_scores, out_boxes, out_classes = sess.run([scores, boxes, classes], feed_dict={yolov3.input:image_data, K.learning_phase():0})
# Print predictions info
print('Found {} boxes for {}'.format(len(out_boxes), image_file))
# Draw bounding boxes on the image file
image = draw_boxes(image, out_scores, out_boxes, out_classes, class_names, colors)
# Save the predicted bounding box on the image
#image.save(os.path.join("out", image_file), quality=90)
cv2.imwrite(os.path.join("out", "yolov3_" + image_file), image, [cv2.IMWRITE_JPEG_QUALITY, 90])
return out_scores, out_boxes, out_classes
def video_detection(sess, image, colors):
resized_image = cv2.resize(image, (416, 416), interpolation=cv2.INTER_AREA)
resized_image = cv2.cvtColor(resized_image, cv2.COLOR_BGR2RGB)
image_data = np.array(resized_image, dtype='float32')
image_data /= 255.
image_data = np.expand_dims(image_data, 0)
out_scores, out_boxes, out_classes = sess.run([scores, boxes, classes], feed_dict={yolov3.input:image_data, K.learning_phase():0})
image = draw_boxes(image, out_scores, out_boxes, out_classes, class_names, colors)
return image
if __name__ == "__main__":
sess = K.get_session()
yolov3 = load_model("model_data/yolov3.h5")
#yolov3.summary()
class_names = read_classes("model_data/yolo_coco_classes.txt")
anchors = read_anchors("model_data/yolov3_anchors.txt")
# Generate colors for drawing bounding boxes.
colors = generate_colors(class_names)
'''
# image detection
image_file = "dog.jpg"
image_path = "images/"
image_shape = np.float32(cv2.imread(image_path + image_file).shape[:2])
scores, boxes, classes = yolo_eval(yolov3.output, anchors, len(class_names), image_shape=image_shape)
# Start to image detect
out_scores, out_boxes, out_classes = image_detection(sess, image_path, image_file, colors)
'''
# video dection
camera = cv2.VideoCapture(0)
image_shape = np.float32(camera.get(4)), np.float32(camera.get(3))
scores, boxes, classes = yolo_eval(yolov3.output, anchors, len(class_names), image_shape=image_shape)
while camera.isOpened():
start = time.time()
ret, frame = camera.read()
if ret:
image = video_detection(sess, frame, colors)
end = time.time()
# fps
t = end - start
fps = "Fps: {:.2f}".format(1 / t)
# display a piece of text to the frame
cv2.putText(image, fps, (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, cv2.LINE_AA)
cv2.imshow('image', image)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
else:
break
camera.release()
cv2.destroyAllWindows()