-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathlearner.py
executable file
·618 lines (504 loc) · 24.4 KB
/
learner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
from tqdm import tqdm
import wandb
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import os
import torch.optim as optim
from data.util import get_dataset, IdxDataset
from module.loss import GeneralizedCELoss
from module.util import get_model
from util import EMA
class Learner(object):
def __init__(self, args):
data2model = {'cmnist': "MLP",
'cifar10c': "ResNet18",
'bffhq': "ResNet18"}
data2batch_size = {'cmnist': 256,
'cifar10c': 256,
'bffhq': 64}
data2preprocess = {'cmnist': None,
'cifar10c': True,
'bffhq': True}
if args.wandb:
import wandb
wandb.init(project='Learning-Debiased-Disetangled')
wandb.run.name = args.exp
run_name = args.exp
if args.tensorboard:
from tensorboardX import SummaryWriter
self.writer = SummaryWriter(f'result/summary/{run_name}')
self.model = data2model[args.dataset]
self.batch_size = data2batch_size[args.dataset]
print(f'model: {self.model} || dataset: {args.dataset}')
print(f'working with experiment: {args.exp}...')
self.log_dir = os.makedirs(os.path.join(args.log_dir, args.dataset, args.exp), exist_ok=True)
self.device = torch.device(args.device)
self.args = args
print(self.args)
# logging directories
self.log_dir = os.path.join(args.log_dir, args.dataset, args.exp)
self.summary_dir = os.path.join(args.log_dir, args.dataset, "summary", args.exp)
self.summary_gradient_dir = os.path.join(self.log_dir, "gradient")
self.result_dir = os.path.join(self.log_dir, "result")
os.makedirs(self.summary_dir, exist_ok=True)
os.makedirs(self.result_dir, exist_ok=True)
self.train_dataset = get_dataset(
args.dataset,
data_dir=args.data_dir,
dataset_split="train",
transform_split="train",
percent=args.percent,
use_preprocess=data2preprocess[args.dataset],
use_type0=args.use_type0,
use_type1=args.use_type1
)
self.valid_dataset = get_dataset(
args.dataset,
data_dir=args.data_dir,
dataset_split="valid",
transform_split="valid",
percent=args.percent,
use_preprocess=data2preprocess[args.dataset],
use_type0=args.use_type0,
use_type1=args.use_type1
)
self.test_dataset = get_dataset(
args.dataset,
data_dir=args.data_dir,
dataset_split="test",
transform_split="valid",
percent=args.percent,
use_preprocess=data2preprocess[args.dataset],
use_type0=args.use_type0,
use_type1=args.use_type1
)
train_target_attr = []
for data in self.train_dataset.data:
train_target_attr.append(int(data.split('_')[-2]))
train_target_attr = torch.LongTensor(train_target_attr)
attr_dims = []
attr_dims.append(torch.max(train_target_attr).item() + 1)
self.num_classes = attr_dims[0]
self.train_dataset = IdxDataset(self.train_dataset)
# make loader
self.train_loader = DataLoader(
self.train_dataset,
batch_size=self.batch_size,
shuffle=True,
num_workers=args.num_workers,
pin_memory=True,
drop_last=True
)
self.valid_loader = DataLoader(
self.valid_dataset,
batch_size=self.batch_size,
shuffle=True,
num_workers=args.num_workers,
pin_memory=True,
)
self.test_loader = DataLoader(
self.test_dataset,
batch_size=self.batch_size,
shuffle=True,
num_workers=args.num_workers,
pin_memory=True,
)
# define model and optimizer
self.model_b = get_model(self.model, attr_dims[0]).to(self.device)
self.model_d = get_model(self.model, attr_dims[0]).to(self.device)
self.optimizer_b = torch.optim.Adam(
self.model_b.parameters(),
lr=args.lr,
weight_decay=args.weight_decay,
)
self.optimizer_d = torch.optim.Adam(
self.model_d.parameters(),
lr=args.lr,
weight_decay=args.weight_decay,
)
# define loss
self.criterion = nn.CrossEntropyLoss(reduction='none')
self.bias_criterion = nn.CrossEntropyLoss(reduction='none')
print(f'self.criterion: {self.criterion}')
print(f'self.bias_criterion: {self.bias_criterion}')
self.sample_loss_ema_b = EMA(torch.LongTensor(train_target_attr), num_classes=self.num_classes, alpha=args.ema_alpha)
self.sample_loss_ema_d = EMA(torch.LongTensor(train_target_attr), num_classes=self.num_classes, alpha=args.ema_alpha)
print(f'alpha : {self.sample_loss_ema_d.alpha}')
self.best_valid_acc_b, self.best_test_acc_b = 0., 0.
self.best_valid_acc_d, self.best_test_acc_d = 0., 0.
print('finished model initialization....')
# evaluation code for vanilla
def evaluate(self, model, data_loader):
model.eval()
total_correct, total_num = 0, 0
for data, attr, index in tqdm(data_loader, leave=False):
label = attr[:, 0]
data = data.to(self.device)
label = label.to(self.device)
with torch.no_grad():
logit = model(data)
pred = logit.data.max(1, keepdim=True)[1].squeeze(1)
correct = (pred == label).long()
total_correct += correct.sum()
total_num += correct.shape[0]
accs = total_correct/float(total_num)
model.train()
return accs
# evaluation code for ours
def evaluate_ours(self,model_b, model_l, data_loader, model='label'):
model_b.eval()
model_l.eval()
total_correct, total_num = 0, 0
for data, attr, index in tqdm(data_loader, leave=False):
label = attr[:, 0]
# label = attr
data = data.to(self.device)
label = label.to(self.device)
with torch.no_grad():
if self.args.dataset == 'cmnist':
z_l = model_l.extract(data)
z_b = model_b.extract(data)
else:
z_l, z_b = [], []
hook_fn = self.model_l.avgpool.register_forward_hook(self.concat_dummy(z_l))
_ = self.model_l(data)
hook_fn.remove()
z_l = z_l[0]
hook_fn = self.model_b.avgpool.register_forward_hook(self.concat_dummy(z_b))
_ = self.model_b(data)
hook_fn.remove()
z_b = z_b[0]
z_origin = torch.cat((z_l, z_b), dim=1)
if model == 'bias':
pred_label = model_b.fc(z_origin)
else:
pred_label = model_l.fc(z_origin)
pred = pred_label.data.max(1, keepdim=True)[1].squeeze(1)
correct = (pred == label).long()
total_correct += correct.sum()
total_num += correct.shape[0]
accs = total_correct/float(total_num)
model_b.train()
model_l.train()
return accs
def save_vanilla(self, step, best=None):
if best:
model_path = os.path.join(self.result_dir, "best_model.th")
else:
model_path = os.path.join(self.result_dir, "model_{}.th".format(step))
state_dict = {
'steps': step,
'state_dict': self.model_b.state_dict(),
'optimizer': self.optimizer_b.state_dict(),
}
with open(model_path, "wb") as f:
torch.save(state_dict, f)
print(f'{step} model saved ...')
def save_ours(self, step, best=None):
if best:
model_path = os.path.join(self.result_dir, "best_model_l.th")
else:
model_path = os.path.join(self.result_dir, "model_l_{}.th".format(step))
state_dict = {
'steps': step,
'state_dict': self.model_l.state_dict(),
'optimizer': self.optimizer_l.state_dict(),
}
with open(model_path, "wb") as f:
torch.save(state_dict, f)
if best:
model_path = os.path.join(self.result_dir, "best_model_b.th")
else:
model_path = os.path.join(self.result_dir, "model_b_{}.th".format(step))
state_dict = {
'steps': step,
'state_dict': self.model_b.state_dict(),
'optimizer': self.optimizer_b.state_dict(),
}
with open(model_path, "wb") as f:
torch.save(state_dict, f)
print(f'{step} model saved ...')
def board_vanilla_loss(self, step, loss_b):
if self.args.wandb:
wandb.log({
"loss_b_train": loss_b,
}, step=step,)
if self.args.tensorboard:
self.writer.add_scalar(f"loss/loss_b_train", loss_b, step)
def board_ours_loss(self, step, loss_dis_conflict, loss_dis_align, loss_swap_conflict, loss_swap_align, lambda_swap):
if self.args.wandb:
wandb.log({
"loss_dis_conflict": loss_dis_conflict,
"loss_dis_align": loss_dis_align,
"loss_swap_conflict": loss_swap_conflict,
"loss_swap_align": loss_swap_align,
"loss": (loss_dis_conflict + loss_dis_align) + lambda_swap * (loss_swap_conflict + loss_swap_align)
}, step=step,)
if self.args.tensorboard:
self.writer.add_scalar(f"loss/loss_dis_conflict", loss_dis_conflict, step)
self.writer.add_scalar(f"loss/loss_dis_align", loss_dis_align, step)
self.writer.add_scalar(f"loss/loss_swap_conflict", loss_swap_conflict, step)
self.writer.add_scalar(f"loss/loss_swap_align", loss_swap_align, step)
self.writer.add_scalar(f"loss/loss", (loss_dis_conflict + loss_dis_align) + lambda_swap * (loss_swap_conflict + loss_swap_align), step)
def board_vanilla_acc(self, step, epoch, inference=None):
valid_accs_b = self.evaluate(self.model_b, self.valid_loader)
test_accs_b = self.evaluate(self.model_b, self.test_loader)
print(f'epoch: {epoch}')
if valid_accs_b >= self.best_valid_acc_b:
self.best_valid_acc_b = valid_accs_b
if test_accs_b >= self.best_test_acc_b:
self.best_test_acc_b = test_accs_b
self.save_vanilla(step, best=True)
if self.args.wandb:
wandb.log({
"acc_b_valid": valid_accs_b,
"acc_b_test": test_accs_b,
},
step=step,)
wandb.log({
"best_acc_b_valid": self.best_valid_acc_b,
"best_acc_b_test": self.best_test_acc_b,
},
step=step, )
print(f'valid_b: {valid_accs_b} || test_b: {test_accs_b}')
if self.args.tensorboard:
self.writer.add_scalar(f"acc/acc_b_valid", valid_accs_b, step)
self.writer.add_scalar(f"acc/acc_b_test", test_accs_b, step)
self.writer.add_scalar(f"acc/best_acc_b_valid", self.best_valid_acc_b, step)
self.writer.add_scalar(f"acc/best_acc_b_test", self.best_test_acc_b, step)
def board_ours_acc(self, step, inference=None):
# check label network
valid_accs_d = self.evaluate_ours(self.model_b, self.model_l, self.valid_loader, model='label')
test_accs_d = self.evaluate_ours(self.model_b, self.model_l, self.test_loader, model='label')
if inference:
print(f'test acc: {test_accs_d.item()}')
import sys
sys.exit(0)
if valid_accs_d >= self.best_valid_acc_d:
self.best_valid_acc_d = valid_accs_d
if test_accs_d >= self.best_test_acc_d:
self.best_test_acc_d = test_accs_d
self.save_ours(step, best=True)
if self.args.wandb:
wandb.log({
"acc_d_valid": valid_accs_d,
"acc_d_test": test_accs_d,
},
step=step, )
wandb.log({
"best_acc_d_valid": self.best_valid_acc_d,
"best_acc_d_test": self.best_test_acc_d,
},
step=step, )
if self.args.tensorboard:
self.writer.add_scalar(f"acc/acc_d_valid", valid_accs_d, step)
self.writer.add_scalar(f"acc/acc_d_test", test_accs_d, step)
self.writer.add_scalar(f"acc/best_acc_d_valid", self.best_valid_acc_d, step)
self.writer.add_scalar(f"acc/best_acc_d_test", self.best_test_acc_d, step)
print(f'valid_d: {valid_accs_d} || test_d: {test_accs_d} ')
def concat_dummy(self, z):
def hook(model, input, output):
z.append(output.squeeze())
return torch.cat((output, torch.zeros_like(output)), dim=1)
return hook
def train_vanilla(self, args):
# training vanilla ...
train_iter = iter(self.train_loader)
train_num = len(self.train_dataset.dataset)
epoch, cnt = 0, 0
for step in tqdm(range(args.num_steps)):
try:
index, data, attr, _ = next(train_iter)
except:
train_iter = iter(self.train_loader)
index, data, attr, _ = next(train_iter)
data = data.to(self.device)
attr = attr.to(self.device)
label = attr[:, args.target_attr_idx]
logit_b = self.model_b(data)
loss_b_update = self.criterion(logit_b, label)
loss = loss_b_update.mean()
self.optimizer_b.zero_grad()
loss.backward()
self.optimizer_b.step()
##################################################
#################### LOGGING #####################
##################################################
if step % args.save_freq == 0:
self.save_vanilla(step)
if step % args.log_freq == 0:
self.board_vanilla_loss(step, loss_b=loss)
if step % args.valid_freq == 0:
self.board_vanilla_acc(step, epoch)
cnt += len(index)
if cnt == train_num:
print(f'finished epoch: {epoch}')
epoch += 1
cnt = 0
def train_ours(self, args):
epoch, cnt = 0, 0
print('************** main training starts... ************** ')
train_num = len(self.train_dataset)
# self.model_l : model for predicting intrinsic attributes ((E_i,C_i) in the main paper)
# self.model_l.fc: fc layer for predicting intrinsic attributes (C_i in the main paper)
# self.model_b : model for predicting bias attributes ((E_b, C_b) in the main paper)
# self.model_b.fc: fc layer for predicting bias attributes (C_b in the main paper)
if args.dataset == 'cmnist':
self.model_l = get_model('mlp_DISENTANGLE', self.num_classes).to(self.device)
self.model_b = get_model('mlp_DISENTANGLE', self.num_classes).to(self.device)
else:
if self.args.use_resnet20: # Use this option only for comparing with LfF
self.model_l = get_model('ResNet20_OURS', self.num_classes).to(self.device)
self.model_b = get_model('ResNet20_OURS', self.num_classes).to(self.device)
print('our resnet20....')
else:
self.model_l = get_model('resnet_DISENTANGLE', self.num_classes).to(self.device)
self.model_b = get_model('resnet_DISENTANGLE', self.num_classes).to(self.device)
self.optimizer_l = torch.optim.Adam(
self.model_l.parameters(),
lr=args.lr,
weight_decay=args.weight_decay,
)
self.optimizer_b = torch.optim.Adam(
self.model_b.parameters(),
lr=args.lr,
weight_decay=args.weight_decay,
)
if args.use_lr_decay:
self.scheduler_b = optim.lr_scheduler.StepLR(self.optimizer_b, step_size=args.lr_decay_step, gamma=args.lr_gamma)
self.scheduler_l = optim.lr_scheduler.StepLR(self.optimizer_l, step_size=args.lr_decay_step, gamma=args.lr_gamma)
self.bias_criterion = GeneralizedCELoss(q=0.7)
print(f'criterion: {self.criterion}')
print(f'bias criterion: {self.bias_criterion}')
train_iter = iter(self.train_loader)
for step in tqdm(range(args.num_steps)):
try:
index, data, attr, image_path = next(train_iter)
except:
train_iter = iter(self.train_loader)
index, data, attr, image_path = next(train_iter)
data = data.to(self.device)
attr = attr.to(self.device)
label = attr[:, args.target_attr_idx].to(self.device)
# Feature extraction
# Prediction by concatenating zero vectors (dummy vectors).
# We do not use the prediction here.
if args.dataset == 'cmnist':
z_l = self.model_l.extract(data)
z_b = self.model_b.extract(data)
else:
z_b = []
# Use this only for reproducing CIFARC10 of LfF
if self.args.use_resnet20:
hook_fn = self.model_b.layer3.register_forward_hook(self.concat_dummy(z_b))
_ = self.model_b(data)
hook_fn.remove()
z_b = z_b[0]
z_l = []
hook_fn = self.model_l.layer3.register_forward_hook(self.concat_dummy(z_l))
_ = self.model_l(data)
hook_fn.remove()
z_l = z_l[0]
else:
hook_fn = self.model_b.avgpool.register_forward_hook(self.concat_dummy(z_b))
_ = self.model_b(data)
hook_fn.remove()
z_b = z_b[0]
z_l = []
hook_fn = self.model_l.avgpool.register_forward_hook(self.concat_dummy(z_l))
_ = self.model_l(data)
hook_fn.remove()
z_l = z_l[0]
# z=[z_l, z_b]
# Gradients of z_b are not backpropagated to z_l (and vice versa) in order to guarantee disentanglement of representation.
z_conflict = torch.cat((z_l, z_b.detach()), dim=1)
z_align = torch.cat((z_l.detach(), z_b), dim=1)
# Prediction using z=[z_l, z_b]
pred_conflict = self.model_l.fc(z_conflict)
pred_align = self.model_b.fc(z_align)
loss_dis_conflict = self.criterion(pred_conflict, label).detach()
loss_dis_align = self.criterion(pred_align, label).detach()
# EMA sample loss
self.sample_loss_ema_d.update(loss_dis_conflict, index)
self.sample_loss_ema_b.update(loss_dis_align, index)
# class-wise normalize
loss_dis_conflict = self.sample_loss_ema_d.parameter[index].clone().detach()
loss_dis_align = self.sample_loss_ema_b.parameter[index].clone().detach()
loss_dis_conflict = loss_dis_conflict.to(self.device)
loss_dis_align = loss_dis_align.to(self.device)
for c in range(self.num_classes):
class_index = torch.where(label == c)[0].to(self.device)
max_loss_conflict = self.sample_loss_ema_d.max_loss(c)
max_loss_align = self.sample_loss_ema_b.max_loss(c)
loss_dis_conflict[class_index] /= max_loss_conflict
loss_dis_align[class_index] /= max_loss_align
loss_weight = loss_dis_align / (loss_dis_align + loss_dis_conflict + 1e-8) # Eq.1 (reweighting module) in the main paper
loss_dis_conflict = self.criterion(pred_conflict, label) * loss_weight.to(self.device) # Eq.2 W(z)CE(C_i(z),y)
loss_dis_align = self.bias_criterion(pred_align, label) # Eq.2 GCE(C_b(z),y)
# feature-level augmentation : augmentation after certain iteration (after representation is disentangled at a certain level)
if step > args.curr_step:
indices = np.random.permutation(z_b.size(0))
z_b_swap = z_b[indices] # z tilde
label_swap = label[indices] # y tilde
# Prediction using z_swap=[z_l, z_b tilde]
# Again, gradients of z_b tilde are not backpropagated to z_l (and vice versa) in order to guarantee disentanglement of representation.
z_mix_conflict = torch.cat((z_l, z_b_swap.detach()), dim=1)
z_mix_align = torch.cat((z_l.detach(), z_b_swap), dim=1)
# Prediction using z_swap
pred_mix_conflict = self.model_l.fc(z_mix_conflict)
pred_mix_align = self.model_b.fc(z_mix_align)
loss_swap_conflict = self.criterion(pred_mix_conflict, label) * loss_weight.to(self.device) # Eq.3 W(z)CE(C_i(z_swap),y)
loss_swap_align = self.bias_criterion(pred_mix_align, label_swap) # Eq.3 GCE(C_b(z_swap),y tilde)
lambda_swap = self.args.lambda_swap # Eq.3 lambda_swap_b
else:
# before feature-level augmentation
loss_swap_conflict = torch.tensor([0]).float()
loss_swap_align = torch.tensor([0]).float()
lambda_swap = 0
loss_dis = loss_dis_conflict.mean() + args.lambda_dis_align * loss_dis_align.mean() # Eq.2 L_dis
loss_swap = loss_swap_conflict.mean() + args.lambda_swap_align * loss_swap_align.mean() # Eq.3 L_swap
loss = loss_dis + lambda_swap * loss_swap # Eq.4 Total objective
self.optimizer_l.zero_grad()
self.optimizer_b.zero_grad()
loss.backward()
self.optimizer_l.step()
self.optimizer_b.step()
if step >= args.curr_step and args.use_lr_decay:
self.scheduler_b.step()
self.scheduler_l.step()
if args.use_lr_decay and step % args.lr_decay_step == 0:
print('******* learning rate decay .... ********')
print(f"self.optimizer_b lr: { self.optimizer_b.param_groups[-1]['lr']}")
print(f"self.optimizer_l lr: { self.optimizer_l.param_groups[-1]['lr']}")
if step % args.save_freq == 0:
self.save_ours(step)
if step % args.log_freq == 0:
bias_label = attr[:, 1]
align_flag = torch.where(label == bias_label)[0]
self.board_ours_loss(
step=step,
loss_dis_conflict=loss_dis_conflict.mean(),
loss_dis_align=args.lambda_dis_align * loss_dis_align.mean(),
loss_swap_conflict=loss_swap_conflict.mean(),
loss_swap_align=args.lambda_swap_align * loss_swap_align.mean(),
lambda_swap=lambda_swap
)
if step % args.valid_freq == 0:
self.board_ours_acc(step)
cnt += data.shape[0]
if cnt == train_num:
print(f'finished epoch: {epoch}')
epoch += 1
cnt = 0
def test_ours(self, args):
if args.dataset == 'cmnist':
self.model_l = get_model('mlp_DISENTANGLE', self.num_classes).to(self.device)
self.model_b = get_model('mlp_DISENTANGLE', self.num_classes).to(self.device)
else:
self.model_l = get_model('resnet_DISENTANGLE', self.num_classes).to(self.device)
self.model_b = get_model('resnet_DISENTANGLE', self.num_classes).to(self.device)
self.model_l.load_state_dict(torch.load(os.path.join(args.pretrained_path, 'best_model_l.th'))['state_dict'])
self.model_b.load_state_dict(torch.load(os.path.join(args.pretrained_path, 'best_model_b.th'))['state_dict'])
self.board_ours_acc(step=0, inference=True)