-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
268 lines (213 loc) · 9.09 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
from typing import Dict, List, Tuple, Optional
import logging
from pathlib import Path
import os
import urllib.request
import zipfile
import gzip
import shutil
import numpy as np
import torch
from gensim.models import KeyedVectors
from sklearn.preprocessing import normalize
from transformers import AutoTokenizer, AutoModel
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Constants
GLOVE_URL = "https://nlp.stanford.edu/data/glove.6B.zip"
GLOVE_ZIP = "glove.6B.zip"
GLOVE_FILE = "glove.6B.100d.txt"
class EmbeddingLoader:
"""Handles loading and processing of different word embedding models."""
def __init__(self, cache_dir: Optional[str] = None):
"""Initialize the embedding loader."""
self.cache_dir = Path(cache_dir) if cache_dir else Path.home() / ".embeddings"
self.cache_dir.mkdir(parents=True, exist_ok=True)
self._models = {}
def download_glove(self):
"""Download and extract GloVe embeddings."""
glove_path = self.cache_dir / GLOVE_FILE
if not glove_path.exists():
zip_path = self.cache_dir / GLOVE_ZIP
# Download
logger.info("Downloading GloVe embeddings...")
urllib.request.urlretrieve(GLOVE_URL, zip_path)
# Extract
logger.info("Extracting GloVe embeddings...")
with zipfile.ZipFile(zip_path, "r") as zip_ref:
zip_ref.extract(GLOVE_FILE, self.cache_dir)
# Cleanup
zip_path.unlink()
return glove_path
def ensure_model_available(self, model_name: str):
"""Ensure the requested model is available, downloading if necessary."""
if model_name.startswith("GloVe"):
return self.download_glove()
elif model_name.startswith("Word2Vec"):
raise NotImplementedError(
"Word2Vec model requires manual download of GoogleNews vectors. "
"Please use GloVe or BERT instead."
)
elif model_name == "BERT":
# BERT will be downloaded automatically by transformers
return None
else:
raise ValueError(f"Unknown model: {model_name}")
def load_embeddings(
self, model_name: str, selected_words: List[str]
) -> Tuple[np.ndarray, List[str], List[str]]:
"""Load word embeddings for selected words."""
try:
# Ensure model is available
self.ensure_model_available(model_name)
if model_name.startswith("GloVe"):
embeddings_dict = self._load_glove_embeddings()
elif model_name.startswith("Word2Vec"):
embeddings_dict = self._load_word2vec_embeddings()
elif model_name == "BERT":
embeddings_dict = self._get_bert_embeddings(selected_words)
else:
raise ValueError(f"Invalid embedding model: {model_name}")
# Filter available words
available_words = [
word.strip()
for word in selected_words
if word.strip() in embeddings_dict
]
missing_words = set(selected_words) - set(available_words)
if missing_words:
logger.warning(f"Words not found in embeddings: {missing_words}")
if not available_words:
raise ValueError("No valid words found in embeddings")
embeddings = np.array([embeddings_dict[word] for word in available_words])
return embeddings, available_words, selected_words
except Exception as e:
logger.exception(f"Failed to load embeddings for {model_name}")
raise
def _load_glove_embeddings(self) -> Dict[str, np.ndarray]:
"""Load GloVe embeddings from file."""
if "glove" not in self._models:
try:
embeddings = {}
glove_path = self.cache_dir / GLOVE_FILE
logger.info(f"Loading GloVe embeddings from {glove_path}")
with open(glove_path, "r", encoding="utf-8") as f:
for line in f:
values = line.split()
word = values[0]
vector = np.asarray(values[1:], dtype="float32")
embeddings[word] = vector
self._models["glove"] = embeddings
logger.info("Successfully loaded GloVe embeddings")
except Exception as e:
logger.exception("Failed to load GloVe embeddings")
raise
return self._models["glove"]
def _load_word2vec_embeddings(self) -> Dict[str, np.ndarray]:
"""Load Word2Vec embeddings from binary file."""
raise NotImplementedError(
"Word2Vec model requires manual download. Please use GloVe or BERT instead."
)
def _get_bert_embeddings(self, words: List[str]) -> Dict[str, np.ndarray]:
"""Get BERT embeddings for a list of words."""
if "bert" not in self._models:
try:
logger.info("Loading BERT model...")
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
model = AutoModel.from_pretrained("bert-base-uncased")
self._models["bert"] = (tokenizer, model)
logger.info("Successfully loaded BERT model")
except Exception as e:
logger.exception("Failed to load BERT model")
raise
tokenizer, model = self._models["bert"]
embeddings = {}
try:
for word in words:
inputs = tokenizer(
word, return_tensors="pt", padding=True, truncation=True
)
with torch.no_grad():
outputs = model(**inputs)
embeddings[word] = outputs.last_hidden_state[:, 0, :].squeeze().numpy()
return embeddings
except Exception as e:
logger.exception("Failed to generate BERT embeddings")
raise
def parse_concept_groups(input_text: str) -> Dict[str, List[str]]:
"""Parse concept groups from input text.
Args:
input_text: Text containing concept groups in format "Group: word1, word2"
Returns:
Dictionary mapping group names to lists of words
Raises:
ValueError: If input text is invalid
"""
try:
groups = {}
for line in input_text.strip().split("\n"):
if ":" not in line:
continue
group, words = line.split(":", 1)
group = group.strip()
if not group:
continue
words = [w.strip() for w in words.split(",") if w.strip()]
if words:
groups[group] = words
if not groups:
raise ValueError("No valid concept groups found in input")
return groups
except Exception as e:
logger.exception("Failed to parse concept groups")
raise
def prepare_data_for_analysis(
encoded_embeddings: np.ndarray,
labels: List[str],
concept_groups: Dict[str, List[str]],
threshold: float,
) -> List[Tuple[int, float]]:
"""Prepare encoded embeddings data for analysis.
Args:
encoded_embeddings: Matrix of encoded embeddings
labels: List of word labels
concept_groups: Dictionary of concept groups
threshold: Threshold for neuron selectivity
Returns:
List of tuples (neuron_index, selectivity_score)
"""
try:
num_neurons = encoded_embeddings.shape[1]
group_names = list(concept_groups.keys())
num_groups = len(group_names)
if num_groups == 0:
raise ValueError("No concept groups provided")
selectivity = np.zeros((num_neurons, num_groups))
# Calculate selectivity for each group
for i, (group, words) in enumerate(concept_groups.items()):
group_indices = [idx for idx, word in enumerate(labels) if word in words]
if not group_indices:
logger.warning(f"No words found for group '{group}'")
continue
group_embeddings = encoded_embeddings[group_indices]
selectivity[:, i] = np.mean(group_embeddings, axis=0)
# Clean and normalize selectivity scores
selectivity = np.nan_to_num(selectivity, 0)
selectivity_normalized = normalize(selectivity, axis=1, norm="l1")
# Find neurons above threshold
results = []
for neuron in range(num_neurons):
max_selectivity = np.max(selectivity_normalized[neuron])
if max_selectivity > threshold:
results.append((neuron, max_selectivity))
return sorted(results, key=lambda x: x[1], reverse=True)
except Exception as e:
logger.exception("Failed to prepare data for analysis")
raise
def load_embeddings(
model_name: str, selected_words: List[str], cache_dir: Optional[str] = None
) -> Tuple[np.ndarray, List[str], List[str]]:
"""Convenience function to load embeddings."""
loader = EmbeddingLoader(cache_dir)
return loader.load_embeddings(model_name, selected_words)