-
Notifications
You must be signed in to change notification settings - Fork 71
/
bert_modeling.py
940 lines (811 loc) · 36.1 KB
/
bert_modeling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""The main BERT model and related functions."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import copy
import json
import math
import six
import tensorflow as tf
from utils import tf_utils
class BertConfig(object):
"""Configuration for `BertModel`."""
def __init__(self,
vocab_size,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
initializer_range=0.02,
backward_compatible=True):
"""Constructs BertConfig.
Args:
vocab_size: Vocabulary size of `inputs_ids` in `BertModel`.
hidden_size: Size of the encoder layers and the pooler layer.
num_hidden_layers: Number of hidden layers in the Transformer encoder.
num_attention_heads: Number of attention heads for each attention layer in
the Transformer encoder.
intermediate_size: The size of the "intermediate" (i.e., feed-forward)
layer in the Transformer encoder.
hidden_act: The non-linear activation function (function or string) in the
encoder and pooler.
hidden_dropout_prob: The dropout probability for all fully connected
layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob: The dropout ratio for the attention
probabilities.
max_position_embeddings: The maximum sequence length that this model might
ever be used with. Typically set this to something large just in case
(e.g., 512 or 1024 or 2048).
type_vocab_size: The vocabulary size of the `token_type_ids` passed into
`BertModel`.
initializer_range: The stdev of the truncated_normal_initializer for
initializing all weight matrices.
backward_compatible: Boolean, whether the variables shape are compatible
with checkpoints converted from TF 1.x BERT.
"""
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.backward_compatible = backward_compatible
@classmethod
def from_dict(cls, json_object):
"""Constructs a `BertConfig` from a Python dictionary of parameters."""
config = BertConfig(vocab_size=None)
for (key, value) in six.iteritems(json_object):
config.__dict__[key] = value
return config
@classmethod
def from_json_file(cls, json_file):
"""Constructs a `BertConfig` from a json file of parameters."""
with tf.io.gfile.GFile(json_file, "r") as reader:
text = reader.read()
return cls.from_dict(json.loads(text))
def to_dict(self):
"""Serializes this instance to a Python dictionary."""
output = copy.deepcopy(self.__dict__)
return output
def to_json_string(self):
"""Serializes this instance to a JSON string."""
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
def get_bert_model(input_word_ids,
input_mask,
input_type_ids,
config=None,
name=None,
float_type=tf.float32):
"""Wraps the core BERT model as a keras.Model."""
bert_model_layer = BertModel(config=config, float_type=float_type, name=name)
pooled_output, sequence_output = bert_model_layer(input_word_ids, input_mask,
input_type_ids)
bert_model = tf.keras.Model(
inputs=[input_word_ids, input_mask, input_type_ids],
outputs=[pooled_output, sequence_output])
return bert_model
class BertModel(tf.keras.layers.Layer):
"""BERT model ("Bidirectional Encoder Representations from Transformers").
Example usage:
```python
# Already been converted into WordPiece token ids
input_word_ids = tf.constant([[31, 51, 99], [15, 5, 0]])
input_mask = tf.constant([[1, 1, 1], [1, 1, 0]])
input_type_ids = tf.constant([[0, 0, 1], [0, 2, 0]])
config = modeling.BertConfig(vocab_size=32000, hidden_size=512,
num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024)
pooled_output, sequence_output = modeling.BertModel(config=config)(
input_word_ids=input_word_ids,
input_mask=input_mask,
input_type_ids=input_type_ids)
...
```
"""
def __init__(self, config, float_type=tf.float32, **kwargs):
super(BertModel, self).__init__(**kwargs)
self.config = (
BertConfig.from_dict(config)
if isinstance(config, dict) else copy.deepcopy(config))
self.float_type = float_type
def build(self, unused_input_shapes):
"""Implements build() for the layer."""
self.embedding_lookup = EmbeddingLookup(
vocab_size=self.config.vocab_size,
embedding_size=self.config.hidden_size,
initializer_range=self.config.initializer_range,
dtype=tf.float32,
name="word_embeddings")
self.embedding_postprocessor = EmbeddingPostprocessor(
use_type_embeddings=True,
token_type_vocab_size=self.config.type_vocab_size,
use_position_embeddings=True,
max_position_embeddings=self.config.max_position_embeddings,
dropout_prob=self.config.hidden_dropout_prob,
initializer_range=self.config.initializer_range,
dtype=tf.float32,
name="embedding_postprocessor")
self.encoder = Transformer(
num_hidden_layers=self.config.num_hidden_layers,
hidden_size=self.config.hidden_size,
num_attention_heads=self.config.num_attention_heads,
intermediate_size=self.config.intermediate_size,
intermediate_activation=self.config.hidden_act,
hidden_dropout_prob=self.config.hidden_dropout_prob,
attention_probs_dropout_prob=self.config.attention_probs_dropout_prob,
initializer_range=self.config.initializer_range,
backward_compatible=self.config.backward_compatible,
float_type=self.float_type,
name="encoder")
self.pooler_transform = tf.keras.layers.Dense(
units=self.config.hidden_size,
activation="tanh",
kernel_initializer=get_initializer(self.config.initializer_range),
name="pooler_transform")
super(BertModel, self).build(unused_input_shapes)
def __call__(self,
input_word_ids,
input_mask=None,
input_type_ids=None,
**kwargs):
inputs = tf_utils.pack_inputs([input_word_ids, input_mask, input_type_ids])
return super(BertModel, self).__call__(inputs, **kwargs)
def call(self, inputs, mode="bert", **kwargs):
"""Implements call() for the layer.
Args:
inputs: packed input tensors.
mode: string, `bert` or `encoder`.
Returns:
Output tensor of the last layer for BERT training (mode=`bert`) which
is a float Tensor of shape [batch_size, seq_length, hidden_size] or
a list of output tensors for encoder usage (mode=`encoder`).
"""
unpacked_inputs = tf_utils.unpack_inputs(inputs)
input_word_ids = unpacked_inputs[0]
input_mask = unpacked_inputs[1]
input_type_ids = unpacked_inputs[2]
word_embeddings = self.embedding_lookup(input_word_ids)
embedding_tensor = self.embedding_postprocessor(
word_embeddings=word_embeddings, token_type_ids=input_type_ids)
if self.float_type == tf.float16:
embedding_tensor = tf.cast(embedding_tensor, tf.float16)
attention_mask = None
if input_mask is not None:
attention_mask = create_attention_mask_from_input_mask(
input_word_ids, input_mask)
if mode == "encoder":
return self.encoder(
embedding_tensor, attention_mask, return_all_layers=True)
sequence_output = self.encoder(embedding_tensor, attention_mask)
first_token_tensor = tf.squeeze(sequence_output[:, 0:1, :], axis=1)
pooled_output = self.pooler_transform(first_token_tensor)
return (pooled_output, sequence_output)
def get_config(self):
config = {"config": self.config.to_dict()}
base_config = super(BertModel, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
class EmbeddingLookup(tf.keras.layers.Layer):
"""Looks up words embeddings for id tensor."""
def __init__(self,
vocab_size,
embedding_size=768,
initializer_range=0.02,
**kwargs):
super(EmbeddingLookup, self).__init__(**kwargs)
self.vocab_size = vocab_size
self.embedding_size = embedding_size
self.initializer_range = initializer_range
def build(self, unused_input_shapes):
"""Implements build() for the layer."""
self.embeddings = self.add_weight(
"embeddings",
shape=[self.vocab_size, self.embedding_size],
initializer=get_initializer(self.initializer_range),
dtype=self.dtype)
super(EmbeddingLookup, self).build(unused_input_shapes)
def call(self, inputs):
"""Implements call() for the layer."""
input_shape = tf_utils.get_shape_list(inputs)
flat_input = tf.reshape(inputs, [-1])
output = tf.gather(self.embeddings, flat_input)
output = tf.reshape(output, input_shape + [self.embedding_size])
return output
class EmbeddingPostprocessor(tf.keras.layers.Layer):
"""Performs various post-processing on a word embedding tensor."""
def __init__(self,
use_type_embeddings=False,
token_type_vocab_size=None,
use_position_embeddings=True,
max_position_embeddings=512,
dropout_prob=0.0,
initializer_range=0.02,
initializer=None,
**kwargs):
super(EmbeddingPostprocessor, self).__init__(**kwargs)
self.use_type_embeddings = use_type_embeddings
self.token_type_vocab_size = token_type_vocab_size
self.use_position_embeddings = use_position_embeddings
self.max_position_embeddings = max_position_embeddings
self.dropout_prob = dropout_prob
self.initializer_range = initializer_range
if not initializer:
self.initializer = get_initializer(self.initializer_range)
else:
self.initializer = initializer
if self.use_type_embeddings and not self.token_type_vocab_size:
raise ValueError("If `use_type_embeddings` is True, then "
"`token_type_vocab_size` must be specified.")
def build(self, input_shapes):
"""Implements build() for the layer."""
(word_embeddings_shape, _) = input_shapes
width = word_embeddings_shape.as_list()[-1]
self.type_embeddings = None
if self.use_type_embeddings:
self.type_embeddings = self.add_weight(
"type_embeddings",
shape=[self.token_type_vocab_size, width],
initializer=get_initializer(self.initializer_range),
dtype=self.dtype)
self.position_embeddings = None
if self.use_position_embeddings:
self.position_embeddings = self.add_weight(
"position_embeddings",
shape=[self.max_position_embeddings, width],
initializer=get_initializer(self.initializer_range),
dtype=self.dtype)
self.output_layer_norm = tf.keras.layers.LayerNormalization(
name="layer_norm", axis=-1, epsilon=1e-12, dtype=tf.float32)
self.output_dropout = tf.keras.layers.Dropout(rate=self.dropout_prob,
dtype=tf.float32)
super(EmbeddingPostprocessor, self).build(input_shapes)
def __call__(self, word_embeddings, token_type_ids=None, **kwargs):
inputs = tf_utils.pack_inputs([word_embeddings, token_type_ids])
return super(EmbeddingPostprocessor, self).__call__(inputs, **kwargs)
def call(self, inputs, **kwargs):
"""Implements call() for the layer."""
unpacked_inputs = tf_utils.unpack_inputs(inputs)
word_embeddings = unpacked_inputs[0]
token_type_ids = unpacked_inputs[1]
input_shape = tf_utils.get_shape_list(word_embeddings, expected_rank=3)
batch_size = input_shape[0]
seq_length = input_shape[1]
width = input_shape[2]
output = word_embeddings
if self.use_type_embeddings:
flat_token_type_ids = tf.reshape(token_type_ids, [-1])
one_hot_ids = tf.one_hot(
flat_token_type_ids,
depth=self.token_type_vocab_size,
dtype=self.dtype)
token_type_embeddings = tf.matmul(one_hot_ids, self.type_embeddings)
token_type_embeddings = tf.reshape(token_type_embeddings,
[batch_size, seq_length, width])
output += token_type_embeddings
if self.use_position_embeddings:
position_embeddings = tf.expand_dims(
tf.slice(self.position_embeddings, [0, 0], [seq_length, width]),
axis=0)
output += position_embeddings
output = self.output_layer_norm(output)
output = self.output_dropout(output,training=kwargs.get('training', False))
return output
class Attention(tf.keras.layers.Layer):
"""Performs multi-headed attention from `from_tensor` to `to_tensor`.
This is an implementation of multi-headed attention based on "Attention
is all you Need". If `from_tensor` and `to_tensor` are the same, then
this is self-attention. Each timestep in `from_tensor` attends to the
corresponding sequence in `to_tensor`, and returns a fixed-with vector.
This function first projects `from_tensor` into a "query" tensor and
`to_tensor` into "key" and "value" tensors. These are (effectively) a list
of tensors of length `num_attention_heads`, where each tensor is of shape
[batch_size, seq_length, size_per_head].
Then, the query and key tensors are dot-producted and scaled. These are
softmaxed to obtain attention probabilities. The value tensors are then
interpolated by these probabilities, then concatenated back to a single
tensor and returned.
In practice, the multi-headed attention are done with tf.einsum as follows:
Input_tensor: [BFD]
Wq, Wk, Wv: [DNH]
Q:[BFNH] = einsum('BFD,DNH->BFNH', Input_tensor, Wq)
K:[BTNH] = einsum('BTD,DNH->BTNH', Input_tensor, Wk)
V:[BTNH] = einsum('BTD,DNH->BTNH', Input_tensor, Wv)
attention_scores:[BNFT] = einsum('BTNH,BFNH->BNFT', K, Q) / sqrt(H)
attention_probs:[BNFT] = softmax(attention_scores)
context_layer:[BFNH] = einsum('BNFT,BTNH->BFNH', attention_probs, V)
Wout:[DNH]
Output:[BFD] = einsum('BFNH,DNH>BFD', context_layer, Wout)
"""
def __init__(self,
num_attention_heads=12,
size_per_head=64,
attention_probs_dropout_prob=0.0,
initializer_range=0.02,
backward_compatible=False,
**kwargs):
super(Attention, self).__init__(**kwargs)
self.num_attention_heads = num_attention_heads
self.size_per_head = size_per_head
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.backward_compatible = backward_compatible
def build(self, unused_input_shapes):
"""Implements build() for the layer."""
self.query_dense = self._projection_dense_layer("query")
self.key_dense = self._projection_dense_layer("key")
self.value_dense = self._projection_dense_layer("value")
self.attention_probs_dropout = tf.keras.layers.Dropout(
rate=self.attention_probs_dropout_prob)
super(Attention, self).build(unused_input_shapes)
def reshape_to_matrix(self, input_tensor):
"""Reshape N > 2 rank tensor to rank 2 tensor for performance."""
ndims = input_tensor.shape.ndims
if ndims < 2:
raise ValueError("Input tensor must have at least rank 2."
"Shape = %s" % (input_tensor.shape))
if ndims == 2:
return input_tensor
width = input_tensor.shape[-1]
output_tensor = tf.reshape(input_tensor, [-1, width])
return output_tensor
def __call__(self, from_tensor, to_tensor, attention_mask=None, **kwargs):
inputs = tf_utils.pack_inputs([from_tensor, to_tensor, attention_mask])
return super(Attention, self).__call__(inputs, **kwargs)
def call(self, inputs,**kwargs):
"""Implements call() for the layer."""
(from_tensor, to_tensor, attention_mask) = tf_utils.unpack_inputs(inputs)
# Scalar dimensions referenced here:
# B = batch size (number of sequences)
# F = `from_tensor` sequence length
# T = `to_tensor` sequence length
# N = `num_attention_heads`
# H = `size_per_head`
# `query_tensor` = [B, F, N ,H]
query_tensor = self.query_dense(from_tensor)
# `key_tensor` = [B, T, N, H]
key_tensor = self.key_dense(to_tensor)
# `value_tensor` = [B, T, N, H]
value_tensor = self.value_dense(to_tensor)
# Take the dot product between "query" and "key" to get the raw
# attention scores.
attention_scores = tf.einsum("BTNH,BFNH->BNFT", key_tensor, query_tensor)
attention_scores = tf.multiply(attention_scores,
1.0 / math.sqrt(float(self.size_per_head)))
if attention_mask is not None:
# `attention_mask` = [B, 1, F, T]
attention_mask = tf.expand_dims(attention_mask, axis=[1])
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
adder = (1.0 - tf.cast(attention_mask, attention_scores.dtype)) * -10000.0
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
attention_scores += adder
# Normalize the attention scores to probabilities.
# `attention_probs` = [B, N, F, T]
attention_probs = tf.nn.softmax(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.attention_probs_dropout(attention_probs,training=kwargs.get('training', False))
# `context_layer` = [B, F, N, H]
context_tensor = tf.einsum("BNFT,BTNH->BFNH", attention_probs, value_tensor)
return context_tensor
def _projection_dense_layer(self, name):
"""A helper to define a projection layer."""
return Dense3D(
num_attention_heads=self.num_attention_heads,
size_per_head=self.size_per_head,
kernel_initializer=get_initializer(self.initializer_range),
output_projection=False,
backward_compatible=self.backward_compatible,
name=name)
class Dense3D(tf.keras.layers.Layer):
"""A Dense Layer using 3D kernel with tf.einsum implementation.
Attributes:
num_attention_heads: An integer, number of attention heads for each
multihead attention layer.
size_per_head: An integer, hidden size per attention head.
hidden_size: An integer, dimension of the hidden layer.
kernel_initializer: An initializer for the kernel weight.
bias_initializer: An initializer for the bias.
activation: An activation function to use. If nothing is specified, no
activation is applied.
use_bias: A bool, whether the layer uses a bias.
output_projection: A bool, whether the Dense3D layer is used for output
linear projection.
backward_compatible: A bool, whether the variables shape are compatible
with checkpoints converted from TF 1.x.
"""
def __init__(self,
num_attention_heads=12,
size_per_head=72,
kernel_initializer=None,
bias_initializer="zeros",
activation=None,
use_bias=True,
output_projection=False,
backward_compatible=False,
**kwargs):
"""Inits Dense3D."""
super(Dense3D, self).__init__(**kwargs)
self.num_attention_heads = num_attention_heads
self.size_per_head = size_per_head
self.hidden_size = num_attention_heads * size_per_head
self.kernel_initializer = kernel_initializer
self.bias_initializer = bias_initializer
self.activation = activation
self.use_bias = use_bias
self.output_projection = output_projection
self.backward_compatible = backward_compatible
@property
def compatible_kernel_shape(self):
if self.output_projection:
return [self.hidden_size, self.hidden_size]
return [self.last_dim, self.hidden_size]
@property
def compatible_bias_shape(self):
return [self.hidden_size]
@property
def kernel_shape(self):
if self.output_projection:
return [self.num_attention_heads, self.size_per_head, self.hidden_size]
return [self.last_dim, self.num_attention_heads, self.size_per_head]
@property
def bias_shape(self):
if self.output_projection:
return [self.hidden_size]
return [self.num_attention_heads, self.size_per_head]
def build(self, input_shape):
"""Implements build() for the layer."""
dtype = tf.as_dtype(self.dtype or tf.keras.backend.floatx())
if not (dtype.is_floating or dtype.is_complex):
raise TypeError("Unable to build `Dense3D` layer with non-floating "
"point (and non-complex) dtype %s" % (dtype,))
input_shape = tf.TensorShape(input_shape)
if tf.compat.dimension_value(input_shape[-1]) is None:
raise ValueError("The last dimension of the inputs to `Dense3D` "
"should be defined. Found `None`.")
self.last_dim = tf.compat.dimension_value(input_shape[-1])
self.input_spec = tf.keras.layers.InputSpec(
min_ndim=3, axes={-1: self.last_dim})
# Determines variable shapes.
if self.backward_compatible:
kernel_shape = self.compatible_kernel_shape
bias_shape = self.compatible_bias_shape
else:
kernel_shape = self.kernel_shape
bias_shape = self.bias_shape
self.kernel = self.add_weight(
"kernel",
shape=kernel_shape,
initializer=self.kernel_initializer,
dtype=self.dtype,
trainable=True)
if self.use_bias:
self.bias = self.add_weight(
"bias",
shape=bias_shape,
initializer=self.bias_initializer,
dtype=self.dtype,
trainable=True)
else:
self.bias = None
super(Dense3D, self).build(input_shape)
def call(self, inputs):
"""Implements ``call()`` for Dense3D.
Args:
inputs: A float tensor of shape [batch_size, sequence_length, hidden_size]
when output_projection is False, otherwise a float tensor of shape
[batch_size, sequence_length, num_heads, dim_per_head].
Returns:
The projected tensor with shape [batch_size, sequence_length, num_heads,
dim_per_head] when output_projection is False, otherwise [batch_size,
sequence_length, hidden_size].
"""
if self.backward_compatible:
kernel = tf.keras.backend.reshape(self.kernel, self.kernel_shape)
bias = (tf.keras.backend.reshape(self.bias, self.bias_shape)
if self.use_bias else None)
else:
kernel = self.kernel
bias = self.bias
if self.output_projection:
ret = tf.einsum("abcd,cde->abe", inputs, kernel)
else:
ret = tf.einsum("abc,cde->abde", inputs, kernel)
if self.use_bias:
ret += bias
if self.activation is not None:
return self.activation(ret)
return ret
class Dense2DProjection(tf.keras.layers.Layer):
"""A 2D projection layer with tf.einsum implementation."""
def __init__(self,
output_size,
kernel_initializer=None,
bias_initializer="zeros",
activation=None,
fp32_activation=False,
**kwargs):
super(Dense2DProjection, self).__init__(**kwargs)
self.output_size = output_size
self.kernel_initializer = kernel_initializer
self.bias_initializer = bias_initializer
self.activation = activation
self.fp32_activation = fp32_activation
def build(self, input_shape):
"""Implements build() for the layer."""
dtype = tf.as_dtype(self.dtype or tf.keras.backend.floatx())
if not (dtype.is_floating or dtype.is_complex):
raise TypeError("Unable to build `Dense2DProjection` layer with "
"non-floating point (and non-complex) "
"dtype %s" % (dtype,))
input_shape = tf.TensorShape(input_shape)
if tf.compat.dimension_value(input_shape[-1]) is None:
raise ValueError("The last dimension of the inputs to "
"`Dense2DProjection` should be defined. "
"Found `None`.")
last_dim = tf.compat.dimension_value(input_shape[-1])
self.input_spec = tf.keras.layers.InputSpec(min_ndim=3, axes={-1: last_dim})
self.kernel = self.add_weight(
"kernel",
shape=[last_dim, self.output_size],
initializer=self.kernel_initializer,
dtype=self.dtype,
trainable=True)
self.bias = self.add_weight(
"bias",
shape=[self.output_size],
initializer=self.bias_initializer,
dtype=self.dtype,
trainable=True)
super(Dense2DProjection, self).build(input_shape)
def call(self, inputs):
"""Implements call() for Dense2DProjection.
Args:
inputs: float Tensor of shape [batch, from_seq_length,
num_attention_heads, size_per_head].
Returns:
A 3D Tensor.
"""
ret = tf.einsum("abc,cd->abd", inputs, self.kernel)
ret += self.bias
if self.activation is not None:
if self.dtype == tf.float16 and self.fp32_activation:
ret = tf.cast(ret, tf.float32)
return self.activation(ret)
return ret
class TransformerBlock(tf.keras.layers.Layer):
"""Single transformer layer.
It has two sub-layers. The first is a multi-head self-attention mechanism, and
the second is a positionwise fully connected feed-forward network.
"""
def __init__(self,
hidden_size=768,
num_attention_heads=12,
intermediate_size=3072,
intermediate_activation="gelu",
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
initializer_range=0.02,
backward_compatible=False,
float_type=tf.float32,
**kwargs):
super(TransformerBlock, self).__init__(**kwargs)
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.intermediate_activation = tf_utils.get_activation(
intermediate_activation)
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.backward_compatible = backward_compatible
self.float_type = float_type
if self.hidden_size % self.num_attention_heads != 0:
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (self.hidden_size, self.num_attention_heads))
self.attention_head_size = int(self.hidden_size / self.num_attention_heads)
def build(self, unused_input_shapes):
"""Implements build() for the layer."""
self.attention_layer = Attention(
num_attention_heads=self.num_attention_heads,
size_per_head=self.attention_head_size,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
initializer_range=self.initializer_range,
backward_compatible=self.backward_compatible,
name="self_attention")
self.attention_output_dense = Dense3D(
num_attention_heads=self.num_attention_heads,
size_per_head=int(self.hidden_size / self.num_attention_heads),
kernel_initializer=get_initializer(self.initializer_range),
output_projection=True,
backward_compatible=self.backward_compatible,
name="self_attention_output")
self.attention_dropout = tf.keras.layers.Dropout(
rate=self.hidden_dropout_prob)
self.attention_layer_norm = (
tf.keras.layers.LayerNormalization(
name="self_attention_layer_norm", axis=-1, epsilon=1e-12,
# We do layer norm in float32 for numeric stability.
dtype=tf.float32))
self.intermediate_dense = Dense2DProjection(
output_size=self.intermediate_size,
kernel_initializer=get_initializer(self.initializer_range),
activation=self.intermediate_activation,
# Uses float32 so that gelu activation is done in float32.
fp32_activation=True,
name="intermediate")
self.output_dense = Dense2DProjection(
output_size=self.hidden_size,
kernel_initializer=get_initializer(self.initializer_range),
name="output")
self.output_dropout = tf.keras.layers.Dropout(rate=self.hidden_dropout_prob)
self.output_layer_norm = tf.keras.layers.LayerNormalization(
name="output_layer_norm", axis=-1, epsilon=1e-12, dtype=tf.float32)
super(TransformerBlock, self).build(unused_input_shapes)
def common_layers(self):
"""Explicitly gets all layer objects inside a Transformer encoder block."""
return [
self.attention_layer, self.attention_output_dense,
self.attention_dropout, self.attention_layer_norm,
self.intermediate_dense, self.output_dense, self.output_dropout,
self.output_layer_norm
]
def __call__(self, input_tensor, attention_mask=None, **kwargs):
inputs = tf_utils.pack_inputs([input_tensor, attention_mask])
return super(TransformerBlock, self).__call__(inputs, **kwargs)
def call(self, inputs, **kwargs):
"""Implements call() for the layer."""
(input_tensor, attention_mask) = tf_utils.unpack_inputs(inputs)
attention_output = self.attention_layer(
from_tensor=input_tensor,
to_tensor=input_tensor,
attention_mask=attention_mask,**kwargs)
attention_output = self.attention_output_dense(attention_output)
attention_output = self.attention_dropout(attention_output,training=kwargs.get('training', False))
# Use float32 in keras layer norm and the gelu activation in the
# intermediate dense layer for numeric stability
attention_output = self.attention_layer_norm(input_tensor +
attention_output)
if self.float_type == tf.float16:
attention_output = tf.cast(attention_output, tf.float16)
intermediate_output = self.intermediate_dense(attention_output)
if self.float_type == tf.float16:
intermediate_output = tf.cast(intermediate_output, tf.float16)
layer_output = self.output_dense(intermediate_output)
layer_output = self.output_dropout(layer_output,training=kwargs.get('training', False))
# Use float32 in keras layer norm for numeric stability
layer_output = self.output_layer_norm(layer_output + attention_output)
if self.float_type == tf.float16:
layer_output = tf.cast(layer_output, tf.float16)
return layer_output
class Transformer(tf.keras.layers.Layer):
"""Multi-headed, multi-layer Transformer from "Attention is All You Need".
This is almost an exact implementation of the original Transformer encoder.
See the original paper:
https://arxiv.org/abs/1706.03762
Also see:
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/transformer.py
"""
def __init__(self,
num_hidden_layers=12,
hidden_size=768,
num_attention_heads=12,
intermediate_size=3072,
intermediate_activation="gelu",
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
initializer_range=0.02,
backward_compatible=False,
float_type=tf.float32,
**kwargs):
super(Transformer, self).__init__(**kwargs)
self.num_hidden_layers = num_hidden_layers
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.intermediate_activation = tf_utils.get_activation(
intermediate_activation)
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.backward_compatible = backward_compatible
self.float_type = float_type
def build(self, unused_input_shapes):
"""Implements build() for the layer."""
self.layers = []
for i in range(self.num_hidden_layers):
self.layers.append(
TransformerBlock(
hidden_size=self.hidden_size,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
intermediate_activation=self.intermediate_activation,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
initializer_range=self.initializer_range,
backward_compatible=self.backward_compatible,
float_type=self.float_type,
name=("layer_%d" % i)))
super(Transformer, self).build(unused_input_shapes)
def __call__(self, input_tensor, attention_mask=None, **kwargs):
inputs = tf_utils.pack_inputs([input_tensor, attention_mask])
return super(Transformer, self).__call__(inputs=inputs, **kwargs)
def call(self, inputs, return_all_layers=False, **kwargs):
"""Implements call() for the layer.
Args:
inputs: packed inputs.
return_all_layers: bool, whether to return outputs of all layers inside
encoders.
Returns:
Output tensor of the last layer or a list of output tensors.
"""
unpacked_inputs = tf_utils.unpack_inputs(inputs)
input_tensor = unpacked_inputs[0]
attention_mask = unpacked_inputs[1]
output_tensor = input_tensor
all_layer_outputs = []
for layer in self.layers:
output_tensor = layer(output_tensor, attention_mask,**kwargs)
all_layer_outputs.append(output_tensor)
if return_all_layers:
return all_layer_outputs
return all_layer_outputs[-1]
def get_initializer(initializer_range=0.02):
"""Creates a `tf.initializers.truncated_normal` with the given range.
Args:
initializer_range: float, initializer range for stddev.
Returns:
TruncatedNormal initializer with stddev = `initializer_range`.
"""
return tf.keras.initializers.TruncatedNormal(stddev=initializer_range)
def create_attention_mask_from_input_mask(from_tensor, to_mask):
"""Create 3D attention mask from a 2D tensor mask.
Args:
from_tensor: 2D or 3D Tensor of shape [batch_size, from_seq_length, ...].
to_mask: int32 Tensor of shape [batch_size, to_seq_length].
Returns:
float Tensor of shape [batch_size, from_seq_length, to_seq_length].
"""
from_shape = tf_utils.get_shape_list(from_tensor, expected_rank=[2, 3])
batch_size = from_shape[0]
from_seq_length = from_shape[1]
to_shape = tf_utils.get_shape_list(to_mask, expected_rank=2)
to_seq_length = to_shape[1]
to_mask = tf.cast(
tf.reshape(to_mask, [batch_size, 1, to_seq_length]),
dtype=from_tensor.dtype)
# We don't assume that `from_tensor` is a mask (although it could be). We
# don't actually care if we attend *from* padding tokens (only *to* padding)
# tokens so we create a tensor of all ones.
#
# `broadcast_ones` = [batch_size, from_seq_length, 1]
broadcast_ones = tf.ones(
shape=[batch_size, from_seq_length, 1], dtype=from_tensor.dtype)
# Here we broadcast along two dimensions to create the mask.
mask = broadcast_ones * to_mask
return mask