-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest.py
27 lines (20 loc) · 811 Bytes
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import torch
from inference import DiarizersLmPipeline
from datasets import load_dataset
import torch
from scipy.io.wavfile import write
# load dataset of concatenated LibriSpeech samples
dataset = load_dataset("diarizers-community/ami",'ihm', split="train", streaming=True)
# get first sample
sample = next(iter(dataset))
sample['audio']['array'] = sample['audio']['array'][60*16000:3*60*16000]
audio = write( filename='example.wav', rate=16000, data=sample['audio']['array'])
device = "cuda:0" if torch.cuda.is_available() else "cpu"
pipeline = DiarizersLmPipeline.from_pretrained(
asr_model = "openai/whisper-large-v3",
diarizer_model = "pyannote/speaker-diarization-3.1",
llm_model = "meta-llama/Meta-Llama-3-8B",
device=device,
)
output = pipeline(sample['audio'])
print(pipeline)