-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
find-minimum-diameter-after-merging-two-trees.cpp
202 lines (185 loc) · 6.79 KB
/
find-minimum-diameter-after-merging-two-trees.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
// Time: O(n + m)
// Space: O(n + m)
// iterative dfs, tree diameter
class Solution {
public:
int minimumDiameterAfterMerge(vector<vector<int>>& edges1, vector<vector<int>>& edges2) {
const auto& ceil_divide = [](const auto& a, const auto& b) {
return (a + b - 1) / 2;
};
const auto& tree_diameter = [](const auto& edges) {
vector<vector<int>> adj(size(edges) + 1);
for (const auto& e : edges) {
adj[e[0]].emplace_back(e[1]);
adj[e[1]].emplace_back(e[0]);
}
int result = 0;
const auto& iter_dfs = [&]() {
int result = 0;
using RET = int;
RET ret{};
vector<tuple<int, int, int, shared_ptr<RET>, RET *>> stk = {{1, 0, -1, nullptr, &ret}};
while (!empty(stk)) {
const auto [step, u, p, ret2, ret] = stk.back(); stk.pop_back();
if (step == 1) {
for (const auto& v : adj[u]) {
if (v == p) {
continue;
}
const auto& ret2 = make_shared<RET>();
stk.emplace_back(2, -2, -2, ret2, ret);
stk.emplace_back(1, v, u, nullptr, ret2.get());
}
} else if (step == 2) {
result = max(result, *ret + (*ret2 + 1));
*ret = max(*ret, *ret2 + 1);
}
}
return result;
};
return iter_dfs();
};
const int d1 = tree_diameter(edges1);
const int d2 = tree_diameter(edges2);
return max({ceil_divide(d1, 2) + 1 + ceil_divide(d2, 2), d1, d2});
}
};
// Time: O(n + m)
// Space: O(n + m)
// dfs, tree diameter
class Solution2 {
public:
int minimumDiameterAfterMerge(vector<vector<int>>& edges1, vector<vector<int>>& edges2) {
const auto& ceil_divide = [](const auto& a, const auto& b) {
return (a + b - 1) / 2;
};
const auto& tree_diameter = [](const auto& edges) {
vector<vector<int>> adj(size(edges) + 1);
for (const auto& e : edges) {
adj[e[0]].emplace_back(e[1]);
adj[e[1]].emplace_back(e[0]);
}
int result = 0;
const function<int (int, int)> dfs = [&](int u, int p) {
int mx = 0;
for (const auto& v : adj[u]) {
if (v == p) {
continue;
}
const int curr = dfs(v, u);
result = max(result, mx + (curr + 1));
mx = max(mx, curr + 1);
}
return mx;
};
dfs(0, -1);
return result;
};
const int d1 = tree_diameter(edges1);
const int d2 = tree_diameter(edges2);
return max({ceil_divide(d1, 2) + 1 + ceil_divide(d2, 2), d1, d2});
}
};
// Time: O(n + m)
// Space: O(n + m)
// bfs, tree dp, tree diameter
class Solution3 {
public:
int minimumDiameterAfterMerge(vector<vector<int>>& edges1, vector<vector<int>>& edges2) {
const auto& ceil_divide = [](const auto& a, const auto& b) {
return (a + b - 1) / 2;
};
const auto& tree_diameter = [](const auto& edges) {
vector<vector<int>> adj(size(edges) + 1);
for (const auto& e : edges) {
adj[e[0]].emplace_back(e[1]);
adj[e[1]].emplace_back(e[0]);
}
int result = 0;
const auto& bfs = [&]() {
int result = 0;
vector<int> dp(size(adj));
vector<int> degree(size(adj));
vector<int> q;
for (int u = 0; u < size(adj); ++u) {
degree[u] = size(adj[u]);
if (degree[u] == 1) {
q.emplace_back(u);
}
}
while (!empty(q)) {
vector<int> new_q;
for (const auto& u : q) {
if (degree[u] == 0) {
continue;
}
--degree[u];
for (const auto& v : adj[u]) {
if (degree[v] == 0) {
continue;
}
result = max(result, dp[v] + (dp[u] + 1));
dp[v] = max(dp[v], dp[u] + 1);
if (--degree[v] == 1) {
new_q.emplace_back(v);
}
}
}
q = move(new_q);
}
return result;
};
return bfs();
};
const int d1 = tree_diameter(edges1);
const int d2 = tree_diameter(edges2);
return max({ceil_divide(d1, 2) + 1 + ceil_divide(d2, 2), d1, d2});
}
};
// Time: O(n + m)
// Space: O(n + m)
// bfs, tree diameter
class Solution4 {
public:
int minimumDiameterAfterMerge(vector<vector<int>>& edges1, vector<vector<int>>& edges2) {
const auto& ceil_divide = [](const auto& a, const auto& b) {
return (a + b - 1) / 2;
};
const auto& tree_diameter = [](const auto& edges) {
vector<vector<int>> adj(size(edges) + 1);
for (const auto& e : edges) {
adj[e[0]].emplace_back(e[1]);
adj[e[1]].emplace_back(e[0]);
}
int result = 0;
const auto& bfs = [&](int root) {
int d = -1, new_root = -1;
vector<bool> lookup(size(adj));
lookup[root] = true;
vector<int> q = {root};
while (!empty(q)) {
++d;
new_root = q[0];
vector<int> new_q;
for (const auto& u : q) {
for (const auto& v : adj[u]) {
if (lookup[v]) {
continue;
}
lookup[v] = true;
new_q.emplace_back(v);
}
}
q = move(new_q);
}
return pair(d, new_root);
};
const auto& [_, root] = bfs(0);
const auto& [d, __] = bfs(root);
return d;
};
const int d1 = tree_diameter(edges1);
const int d2 = tree_diameter(edges2);
return max({ceil_divide(d1, 2) + 1 + ceil_divide(d2, 2), d1, d2});
}
};