-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathval.py
108 lines (92 loc) · 4.11 KB
/
val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import argparse
import torch
import torch.nn as nn
import numpy as np
import os
from torch.nn.utils.rnn import pack_padded_sequence
from torchvision import transforms
import torch.nn.functional as F
import time
import random
import json
from utils.data_loader import get_loader
from tensorboardX import SummaryWriter
from model.miml import MIML
from sklearn.metrics import average_precision_score, f1_score, hamming_loss
from utils.metric import compute_mAP
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def visualization(features):
pass
def main(args):
print("load vocabulary ...")
# Load vocabulary wrapper
with open(args.vocab_path, 'r') as f:
vocab = json.load(f)
print("build data loader ...")
# load data
test_loader = get_loader(root=args.root, origin_file=args.caption_path, split=args.split,
img_tags=args.img_tags, vocab=args.vocab_path, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers)
print("build the models ...")
# Build the models
checkpoint = torch.load(args.model_path)
model = MIML(L=args.L, K=args.K, batch_size=args.batch_size, base_model='resnet',
fine_tune=False)
model.intermidate.load_state_dict(checkpoint['intermidate'])
model.last.load_state_dict(checkpoint['last'])
model.sub_concept_layer.load_state_dict(checkpoint['sub_concept_layer'])
model = model.to(device)
model.eval()
critiation = nn.BCELoss()
# critiation = nn.DataParallel(critiation, device_ids=[0, 1])
time_start = time.time()
total_step = len(test_loader)
writer = SummaryWriter(log_dir='./log_test')
hamming_loss_sum = 0.0
mAp_sum = 0
with torch.no_grad():
for i, (imgs, tars) in enumerate(test_loader):
images = imgs.cuda()
targets = tars.float().cuda()
pre = torch.zeros(args.batch_size, args.L)
outputs = model(images)
loss = critiation(outputs, targets) # .mean()
pre = outputs >= args.threshold
# h_loss = hamming_loss(targets.cpu(), pre.cpu())
mAp = compute_mAP(targets.cpu(), pre.cpu())
# hamming_loss_sum += h_loss
mAp_sum += mAp
# for j in range(args.batch_size):
# print('tar:', targets[j].nonzero())
# print('pre:', pre[j].nonzero())
# Print log info
if i % args.log_step == 0:
time_end = time.time()
print('step :[{}/{}], mAp: [{:.4f}/{:.4f}], Time:{}'
.format(i, total_step, mAp, mAp_sum/(i+1), time_end-time_start))
time_start = time_end
writer.add_scalars(
'metric', {'mAp': mAp}, i)
writer.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--root', type=str,
default='/home/lkk/datasets/coco2014', help='root path')
parser.add_argument('--model_path', type=str,
default='/home/lkk/code/MIML/models/checkpoint_ResNet_epoch_22.pth.tar', help='path for saving trained models')
parser.add_argument('--vocab_path', type=str,
default='./vocab.json', help='path for vocabulary wrapper')
parser.add_argument('--split', type=str,
default='test', help='train/val/test')
parser.add_argument('--caption_path', type=str, default='/home/lkk/datasets/coco2014/dataset_coco.json',
help='path for train annotation json file')
parser.add_argument('--img_tags', type=str,
default='./img_tags.json', help='imgages id and tags')
parser.add_argument('--log_step', type=int, default=1,
help='step size for prining log info')
parser.add_argument('--L', type=int, default=1024)
parser.add_argument('--K', type=int, default=20)
parser.add_argument('--batch_size', type=int, default=256)
parser.add_argument('--threshold', type=float, default=0.5)
parser.add_argument('--num_workers', type=int, default=0)
args = parser.parse_args()
main(args)