-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvis.py
87 lines (73 loc) · 3.09 KB
/
vis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
from utils.utils import plot_instance_attention, plot_instance_probs_heatmap
import argparse
import cv2
import matplotlib.pyplot as plt
import numpy as np
import sys
from utils.data_loader import CocoDataset
from model.miml import MIML
import json
import torch
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
features = torch.empty(1, 64, 1024).to(device)
instance_probs = None
def hook(module, input, ouput):
global features, instance_probs
features = torch.empty(1, 64, 1024).to(device)
features.copy_(ouput.data)
features = features.permute(0, 2, 1).reshape(-1, 1024, 1, 64)
instance_probs = features.permute(0, 3, 1, 2)[:, :, :, 0].squeeze().cpu()
# print("instance_probs.shape=", instance_probs.shape)
# plot instance label score
plot_instance_probs_heatmap(instance_probs, './1.jpg')
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--model", dest="model", type=str,
default="/home/lkk/code/MIML/models/checkpoint_ResNet_epoch_22.pth.tar")
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
root = '/home/lkk/datasets/coco2014'
origin_file = root+'/'+'dataset_coco.json'
img_tags = './img_tags.json'
voc = './vocab.json'
dataset = CocoDataset(root=root,
origin_file=origin_file,
split='test',
img_tags=img_tags,
vocab=voc)
choose = np.random.randint(0, len(dataset), 10)
with open(voc, 'r') as j:
vocab = json.load(j)
cls_names = vocab['map_word']
checkpoint = torch.load(args.model)
model = MIML(L=1024, K=20, batch_size=8, base_model='resnet',
fine_tune=False)
model.intermidate.load_state_dict(checkpoint['intermidate'])
model.last.load_state_dict(checkpoint['last'])
model.sub_concept_layer.load_state_dict(checkpoint['sub_concept_layer'])
model = model.to(device)
model.eval()
for it in choose:
im, image_data, target = dataset.image_at(it)
# heat map
handle = model.sub_concept_layer.softmax1.register_forward_hook(
hook)
label_id_list = np.where(model(image_data.unsqueeze(
0).cuda()).cpu().detach().numpy() > 0.5)[0]
handle.remove()
label_name_list = [cls_names[str(i+1)] for i in label_id_list]
instance_points, instance_labels = [], []
for _i, label_id in enumerate(label_id_list):
max_instance_id = np.argmax(instance_probs[:, label_id])
conv_y, conv_x = max_instance_id / 8, max_instance_id % 8
instance_points.append(((conv_x * 32 + 4), (conv_y * 32 + 4)))
instance_labels.append(label_name_list[_i])
im_plot = cv2.resize(np.array(im), (256, 256)).astype(
np.uint8)[:, :, (0, 1, 2)]
plot_instance_attention(im_plot, instance_points,
instance_labels, save_path='./vis_5/'+str(it)+'.jpg')
print(target)
print(instance_labels)
print('****************')