-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatrix4.hs
1373 lines (1239 loc) · 46.4 KB
/
matrix4.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
-- | Matrix datatype and operations.
--
-- Every provided example has been tested.
-- Run @cabal test@ for further tests.
module Data.Matrix (
-- * Matrix type
Matrix , prettyMatrix
, nrows , ncols
, forceMatrix
-- * Builders
, matrix
, rowVector
, colVector
-- ** Special matrices
, zero
, identity
, diagonalList
, diagonal
, permMatrix
-- * List conversions
, fromList , fromLists
, toList , toLists
-- * Accessing
, getElem , (!) , unsafeGet , safeGet, safeSet
, getRow , getCol
, getDiag
, getMatrixAsVector
-- * Manipulating matrices
, setElem
, unsafeSet
, transpose , setSize , extendTo
, inverse, rref
, mapRow , mapCol
-- * Submatrices
-- ** Splitting blocks
, submatrix
, minorMatrix
, splitBlocks
-- ** Joining blocks
, (<|>) , (<->)
, joinBlocks
-- * Matrix operations
, elementwise, elementwiseUnsafe
-- * Matrix multiplication
-- ** About matrix multiplication
-- $mult
-- ** Functions
, multStd
, multStd2
, multStrassen
, multStrassenMixed
-- * Linear transformations
, scaleMatrix
, scaleRow
, combineRows
, switchRows
, switchCols
-- * Decompositions
, luDecomp , luDecompUnsafe
, luDecomp', luDecompUnsafe'
, cholDecomp
-- * Properties
, trace , diagProd
-- ** Determinants
, detLaplace
, detLU
, flatten
) where
import Prelude hiding (foldl1)
-- Classes
import Control.DeepSeq
import Control.Monad (forM_)
import Control.Loop (numLoop,numLoopFold)
import Data.Foldable (Foldable, foldMap, foldl1)
import Data.Maybe
import Data.Monoid
import Data.Traversable
import Control.Applicative(Applicative, (<$>), (<*>), pure)
-- Data
import Control.Monad.Primitive (PrimMonad, PrimState)
import Data.List (maximumBy,foldl1')
import Data.Ord (comparing)
import qualified Data.Vector as V
import qualified Data.Vector.Mutable as MV
import Data.Maybe
-------------------------------------------------------
-------------------------------------------------------
---- MATRIX TYPE
encode :: Int -> (Int,Int) -> Int
{-# INLINE encode #-}
encode m (i,j) = (i-1)*m + j - 1
decode :: Int -> Int -> (Int,Int)
{-# INLINE decode #-}
decode m k = (q+1,r+1)
where
(q,r) = quotRem k m
-- | Type of matrices.
--
-- Elements can be of any type. Rows and columns
-- are indexed starting by 1. This means that, if @m :: Matrix a@ and
-- @i,j :: Int@, then @m ! (i,j)@ is the element in the @i@-th row and
-- @j@-th column of @m@.
data Matrix a = M {
nrows :: {-# UNPACK #-} !Int -- ^ Number of rows.
, ncols :: {-# UNPACK #-} !Int -- ^ Number of columns.
, rowOffset :: {-# UNPACK #-} !Int
, colOffset :: {-# UNPACK #-} !Int
, vcols :: {-# UNPACK #-} !Int -- ^ Number of columns of the matrix without offset
, mvect :: V.Vector a -- ^ Content of the matrix as a plain vector.
}
instance Eq a => Eq (Matrix a) where
m1 == m2 =
let r = nrows m1
c = ncols m1
in and $ (r == nrows m2) : (c == ncols m2)
: [ m1 ! (i,j) == m2 ! (i,j) | i <- [1 .. r] , j <- [1 .. c] ]
-- | Just a cool way to output the size of a matrix.
sizeStr :: Int -> Int -> String
sizeStr n m = show n ++ "x" ++ show m
-- | Display a matrix as a 'String' using the 'Show' instance of its elements.
prettyMatrix :: Show a => Matrix a -> String
prettyMatrix m@(M _ _ _ _ _ v) = unlines
[ "( " <> unwords (fmap (\j -> fill mx $ show $ m ! (i,j)) [1..ncols m]) <> " )" | i <- [1..nrows m] ]
where
mx = V.maximum $ fmap (length . show) v
fill k str = replicate (k - length str) ' ' ++ str
instance Show a => Show (Matrix a) where
show = prettyMatrix
instance NFData a => NFData (Matrix a) where
rnf = rnf . mvect
-- | /O(rows*cols)/. Similar to 'V.force'. It copies the matrix content
-- dropping any extra memory.
--
-- Useful when using 'submatrix' from a big matrix.
--
forceMatrix :: Matrix a -> Matrix a
forceMatrix m = matrix (nrows m) (ncols m) $ \(i,j) -> unsafeGet i j m
-------------------------------------------------------
-------------------------------------------------------
---- FUNCTOR INSTANCE
instance Functor Matrix where
{-# INLINE fmap #-}
fmap f (M n m ro co w v) = M n m ro co w $ V.map f v
-------------------------------------------------------
-------------------------------------------------------
-------------------------------------------------------
-------------------------------------------------------
---- MONOID INSTANCE
instance Monoid a => Monoid (Matrix a) where
mempty = fromList 1 1 [mempty]
mappend m m' = matrix (max (nrows m) (nrows m')) (max (ncols m) (ncols m')) $ uncurry zipTogether
where zipTogether row column = fromMaybe mempty $ safeGet row column m <> safeGet row column m'
-------------------------------------------------------
-------------------------------------------------------
-------------------------------------------------------
-------------------------------------------------------
-------------------------------------------------------
-------------------------------------------------------
---- APPLICATIVE INSTANCE
---- Works like tensor product but applies a function
instance Applicative Matrix where
pure x = fromList 1 1 [x]
m <*> m' = flatten $ ((\f -> f <$> m') <$> m)
-------------------------------------------------------
-------------------------------------------------------
-- | Flatten a matrix of matrices. All sub matrices must have same dimensions
-- This criteria is not checked.
flatten:: (Matrix (Matrix a)) -> Matrix a
flatten m = foldl1 (<->) $ map (foldl1 (<|>) . (\i -> getRow i m)) [1..(nrows m)]
-- | /O(rows*cols)/. Map a function over a row.
-- Example:
--
-- > ( 1 2 3 ) ( 1 2 3 )
-- > ( 4 5 6 ) ( 5 6 7 )
-- > mapRow (\_ x -> x + 1) 2 ( 7 8 9 ) = ( 7 8 9 )
--
mapRow :: (Int -> a -> a) -- ^ Function takes the current column as additional argument.
-> Int -- ^ Row to map.
-> Matrix a -> Matrix a
mapRow f r m =
matrix (nrows m) (ncols m) $ \(i,j) ->
let a = unsafeGet i j m
in if i == r
then f j a
else a
-- | /O(rows*cols)/. Map a function over a column.
-- Example:
--
-- > ( 1 2 3 ) ( 1 3 3 )
-- > ( 4 5 6 ) ( 4 6 6 )
-- > mapCol (\_ x -> x + 1) 2 ( 7 8 9 ) = ( 7 9 9 )
--
mapCol :: (Int -> a -> a) -- ^ Function takes the current row as additional argument.
-> Int -- ^ Column to map.
-> Matrix a -> Matrix a
mapCol f c m =
matrix (nrows m) (ncols m) $ \(i,j) ->
let a = unsafeGet i j m
in if j == c
then f i a
else a
-------------------------------------------------------
-------------------------------------------------------
---- FOLDABLE AND TRAVERSABLE INSTANCES
instance Foldable Matrix where
foldMap f = foldMap f . mvect . forceMatrix
instance Traversable Matrix where
sequenceA m = fmap (M (nrows m) (ncols m) 0 0 (ncols m)) . sequenceA . mvect $ forceMatrix m
-------------------------------------------------------
-------------------------------------------------------
---- BUILDERS
-- | /O(rows*cols)/. The zero matrix of the given size.
--
-- > zero n m =
-- > m
-- > 1 ( 0 0 ... 0 0 )
-- > 2 ( 0 0 ... 0 0 )
-- > ( ... )
-- > ( 0 0 ... 0 0 )
-- > n ( 0 0 ... 0 0 )
zero :: Num a =>
Int -- ^ Rows
-> Int -- ^ Columns
-> Matrix a
{-# INLINE zero #-}
zero n m = M n m 0 0 m $ V.replicate (n*m) 0
-- | /O(rows*cols)/. Generate a matrix from a generator function.
-- Example of usage:
--
-- > ( 1 0 -1 -2 )
-- > ( 3 2 1 0 )
-- > ( 5 4 3 2 )
-- > matrix 4 4 $ \(i,j) -> 2*i - j = ( 7 6 5 4 )
matrix :: Int -- ^ Rows
-> Int -- ^ Columns
-> ((Int,Int) -> a) -- ^ Generator function
-> Matrix a
{-# INLINE matrix #-}
matrix n m f = M n m 0 0 m $ V.create $ do
v <- MV.new $ n * m
let en = encode m
numLoop 1 n $
\i -> numLoop 1 m $
\j -> MV.unsafeWrite v (en (i,j)) (f (i,j))
return v
-- | /O(rows*cols)/. Identity matrix of the given order.
--
-- > identity n =
-- > n
-- > 1 ( 1 0 ... 0 0 )
-- > 2 ( 0 1 ... 0 0 )
-- > ( ... )
-- > ( 0 0 ... 1 0 )
-- > n ( 0 0 ... 0 1 )
--
identity :: Num a => Int -> Matrix a
identity n = matrix n n $ \(i,j) -> if i == j then 1 else 0
-- | Similar to 'diagonalList', but using 'V.Vector', which
-- should be more efficient.
diagonal :: a -- ^ Default element
-> V.Vector a -- ^ Diagonal vector
-> Matrix a
diagonal e v = matrix n n $ \(i,j) -> if i == j then V.unsafeIndex v (i - 1) else e
where
n = V.length v
-- | Create a matrix from a non-empty list given the desired size.
-- The list must have at least /rows*cols/ elements.
-- An example:
--
-- > ( 1 2 3 )
-- > ( 4 5 6 )
-- > fromList 3 3 [1..] = ( 7 8 9 )
--
fromList :: Int -- ^ Rows
-> Int -- ^ Columns
-> [a] -- ^ List of elements
-> Matrix a
{-# INLINE fromList #-}
fromList n m = M n m 0 0 m . V.fromListN (n*m)
-- | Get the elements of a matrix stored in a list.
--
-- > ( 1 2 3 )
-- > ( 4 5 6 )
-- > toList ( 7 8 9 ) = [1,2,3,4,5,6,7,8,9]
--
toList :: Matrix a -> [a]
toList m = [ unsafeGet i j m | i <- [1 .. nrows m] , j <- [1 .. ncols m] ]
-- | Get the elements of a matrix stored in a list of lists,
-- where each list contains the elements of a single row.
--
-- > ( 1 2 3 ) [ [1,2,3]
-- > ( 4 5 6 ) , [4,5,6]
-- > toLists ( 7 8 9 ) = , [7,8,9] ]
--
toLists :: Matrix a -> [[a]]
toLists m = [ [ unsafeGet i j m | j <- [1 .. ncols m] ] | i <- [1 .. nrows m] ]
-- | Diagonal matrix from a non-empty list given the desired size.
-- Non-diagonal elements will be filled with the given default element.
-- The list must have at least /order/ elements.
--
-- > diagonalList n 0 [1..] =
-- > n
-- > 1 ( 1 0 ... 0 0 )
-- > 2 ( 0 2 ... 0 0 )
-- > ( ... )
-- > ( 0 0 ... n-1 0 )
-- > n ( 0 0 ... 0 n )
--
diagonalList :: Int -> a -> [a] -> Matrix a
diagonalList n e xs = matrix n n $ \(i,j) -> if i == j then xs !! (i - 1) else e
-- | Create a matrix from a non-empty list of non-empty lists.
-- /Each list must have at least as many elements as the first list/.
-- Examples:
--
-- > fromLists [ [1,2,3] ( 1 2 3 )
-- > , [4,5,6] ( 4 5 6 )
-- > , [7,8,9] ] = ( 7 8 9 )
--
-- > fromLists [ [1,2,3 ] ( 1 2 3 )
-- > , [4,5,6,7] ( 4 5 6 )
-- > , [8,9,0 ] ] = ( 8 9 0 )
--
fromLists :: [[a]] -> Matrix a
{-# INLINE fromLists #-}
fromLists [] = error "fromLists: empty list."
fromLists (xs:xss) = fromList n m $ concat $ xs : fmap (take m) xss
where
n = 1 + length xss
m = length xs
-- | /O(1)/. Represent a vector as a one row matrix.
rowVector :: V.Vector a -> Matrix a
rowVector v = M 1 m 0 0 m v
where
m = V.length v
-- | /O(1)/. Represent a vector as a one column matrix.
colVector :: V.Vector a -> Matrix a
colVector v = M (V.length v) 1 0 0 1 v
-- | /O(rows*cols)/. Permutation matrix.
--
-- > permMatrix n i j =
-- > i j n
-- > 1 ( 1 0 ... 0 ... 0 ... 0 0 )
-- > 2 ( 0 1 ... 0 ... 0 ... 0 0 )
-- > ( ... ... ... )
-- > i ( 0 0 ... 0 ... 1 ... 0 0 )
-- > ( ... ... ... )
-- > j ( 0 0 ... 1 ... 0 ... 0 0 )
-- > ( ... ... ... )
-- > ( 0 0 ... 0 ... 0 ... 1 0 )
-- > n ( 0 0 ... 0 ... 0 ... 0 1 )
--
-- When @i == j@ it reduces to 'identity' @n@.
--
permMatrix :: Num a
=> Int -- ^ Size of the matrix.
-> Int -- ^ Permuted row 1.
-> Int -- ^ Permuted row 2.
-> Matrix a -- ^ Permutation matrix.
permMatrix n r1 r2 | r1 == r2 = identity n
permMatrix n r1 r2 = matrix n n f
where
f (i,j)
| i == r1 = if j == r2 then 1 else 0
| i == r2 = if j == r1 then 1 else 0
| i == j = 1
| otherwise = 0
-------------------------------------------------------
-------------------------------------------------------
---- ACCESSING
-- | /O(1)/. Get an element of a matrix. Indices range from /(1,1)/ to /(n,m)/.
-- It returns an 'error' if the requested element is outside of range.
getElem :: Int -- ^ Row
-> Int -- ^ Column
-> Matrix a -- ^ Matrix
-> a
{-# INLINE getElem #-}
getElem i j m =
case safeGet i j m of
Just x -> x
Nothing -> error
$ "getElem: Trying to get the "
++ show (i,j)
++ " element from a "
++ sizeStr (nrows m) (ncols m)
++ " matrix."
-- | /O(1)/. Unsafe variant of 'getElem', without bounds checking.
unsafeGet :: Int -- ^ Row
-> Int -- ^ Column
-> Matrix a -- ^ Matrix
-> a
{-# INLINE unsafeGet #-}
unsafeGet i j (M _ _ ro co w v) = V.unsafeIndex v $ encode w (i+ro,j+co)
-- | Short alias for 'getElem'.
(!) :: Matrix a -> (Int,Int) -> a
{-# INLINE (!) #-}
m ! (i,j) = getElem i j m
-- | Internal alias for 'unsafeGet'.
(!.) :: Matrix a -> (Int,Int) -> a
{-# INLINE (!.) #-}
m !. (i,j) = unsafeGet i j m
-- | Variant of 'getElem' that returns Maybe instead of an error.
safeGet :: Int -> Int -> Matrix a -> Maybe a
safeGet i j a@(M n m _ _ _ _)
| i > n || j > m || i < 1 || j < 1 = Nothing
| otherwise = Just $ unsafeGet i j a
-- | Variant of 'setElem' that returns Maybe instead of an error.
safeSet:: a -> (Int, Int) -> Matrix a -> Maybe (Matrix a)
safeSet x p@(i,j) a@(M n m _ _ _ _)
| i > n || j > m || i < 1 || j < 1 = Nothing
| otherwise = Just $ unsafeSet x p a
-- | /O(1)/. Get a row of a matrix as a vector.
getRow :: Int -> Matrix a -> V.Vector a
{-# INLINE getRow #-}
getRow i (M _ m ro co w v) = V.slice (w*(i-1+ro) + co) m v
-- | /O(rows)/. Get a column of a matrix as a vector.
getCol :: Int -> Matrix a -> V.Vector a
{-# INLINE getCol #-}
getCol j (M n _ ro co w v) = V.generate n $ \i -> v V.! encode w (i+1+ro,j+co)
-- | /O(min rows cols)/. Diagonal of a /not necessarily square/ matrix.
getDiag :: Matrix a -> V.Vector a
getDiag m = V.generate k $ \i -> m ! (i+1,i+1)
where
k = min (nrows m) (ncols m)
-- | /O(rows*cols)/. Transform a 'Matrix' to a 'V.Vector' of size /rows*cols/.
-- This is equivalent to get all the rows of the matrix using 'getRow'
-- and then append them, but far more efficient.
getMatrixAsVector :: Matrix a -> V.Vector a
getMatrixAsVector = mvect . forceMatrix
-------------------------------------------------------
-------------------------------------------------------
---- MANIPULATING MATRICES
msetElem :: PrimMonad m
=> a -- ^ New element
-> Int -- ^ Number of columns of the matrix
-> Int -- ^ Row offset
-> Int -- ^ Column offset
-> (Int,Int) -- ^ Position to set the new element
-> MV.MVector (PrimState m) a -- ^ Mutable vector
-> m ()
{-# INLINE msetElem #-}
msetElem x w ro co (i,j) v = MV.write v (encode w (i+ro,j+co)) x
unsafeMset :: PrimMonad m
=> a -- ^ New element
-> Int -- ^ Number of columns of the matrix
-> Int -- ^ Row offset
-> Int -- ^ Column offset
-> (Int,Int) -- ^ Position to set the new element
-> MV.MVector (PrimState m) a -- ^ Mutable vector
-> m ()
{-# INLINE unsafeMset #-}
unsafeMset x w ro co (i,j) v = MV.unsafeWrite v (encode w (i+ro,j+co)) x
-- | Replace the value of a cell in a matrix.
setElem :: a -- ^ New value.
-> (Int,Int) -- ^ Position to replace.
-> Matrix a -- ^ Original matrix.
-> Matrix a -- ^ Matrix with the given position replaced with the given value.
{-# INLINE setElem #-}
setElem x p (M n m ro co w v) = M n m ro co w $ V.modify (msetElem x w ro co p) v
-- | Unsafe variant of 'setElem', without bounds checking.
unsafeSet :: a -- ^ New value.
-> (Int,Int) -- ^ Position to replace.
-> Matrix a -- ^ Original matrix.
-> Matrix a -- ^ Matrix with the given position replaced with the given value.
{-# INLINE unsafeSet #-}
unsafeSet x p (M n m ro co w v) = M n m ro co w $ V.modify (unsafeMset x w ro co p) v
-- | /O(rows*cols)/. The transpose of a matrix.
-- Example:
--
-- > ( 1 2 3 ) ( 1 4 7 )
-- > ( 4 5 6 ) ( 2 5 8 )
-- > transpose ( 7 8 9 ) = ( 3 6 9 )
transpose :: Matrix a -> Matrix a
transpose m = matrix (ncols m) (nrows m) $ \(i,j) -> m ! (j,i)
-- | /O(rows*rows*rows) = O(cols*cols*cols)/. The inverse of a square matrix.
-- Uses naive Gaussian elimination formula.
inverse :: (Fractional a, Eq a) => Matrix a -> Either String (Matrix a)
inverse m
| ncols m /= nrows m
= Left
$ "Inverting non-square matrix with dimensions "
++ show (sizeStr (ncols m) (nrows m))
| otherwise =
let
adjoinedWId = m <|> identity (nrows m)
rref'd = rref adjoinedWId
in rref'd >>= return . submatrix 1 (nrows m) (ncols m + 1) (ncols m * 2)
-- | /O(rows*rows*cols)/. Converts a matrix to reduced row echelon form, thus
-- solving a linear system of equations. This requires that (cols > rows)
-- if cols < rows, then there are fewer variables than equations and the
-- problem cannot be solved consistently. If rows = cols, then it is
-- basically a homogenous system of equations, so it will be reduced to
-- identity or an error depending on whether the marix is invertible
-- (this case is allowed for robustness).
rref :: (Fractional a, Eq a) => Matrix a -> Either String (Matrix a)
rref m
| ncols m < nrows m
= Left $
"Invalid dimensions "
++ show (sizeStr (ncols m) (nrows m))
++ "; the number of columns must be greater than or equal to the number of rows"
| otherwise = rrefRefd (ref m)
where
rrefRefd mtx
| nrows mtx == 1 = Right mtx
| otherwise =
let
resolvedRight = foldr (.) id (map resolveRow [1..col-1]) mtx
where
col = nrows mtx
resolveRow n = combineRows n (-getElem n col mtx) col
top = submatrix 1 (nrows resolvedRight - 1) 1 (ncols resolvedRight) resolvedRight
top' = rrefRefd top
bot = submatrix (nrows resolvedRight) (nrows resolvedRight) 1 (ncols resolvedRight) resolvedRight
in top' >>= return . (<-> bot)
ref :: (Fractional a, Eq a) => Matrix a -> Matrix a
ref mtx
| nrows mtx == 1
= clearedLeft
| otherwise =
let
(tl, tr, bl, br) = splitBlocks 1 1 clearedLeft
br' = ref br
in (tl <|> tr) <-> (bl <|> br')
where
sigAtTop = switchRows 1 goodRow mtx
where
significantRow n = getElem n 1 mtx /= 0
goodRow = case listToMaybe (filter significantRow [1..ncols mtx]) of
Nothing -> error "Attempt to invert a non-invertible matrix"
Just x -> x
normalizedFirstRow = scaleRow (1 / getElem 1 1 mtx) 1 sigAtTop
clearedLeft = foldr (.) id (map combinator [2..nrows mtx]) normalizedFirstRow
where
combinator n = combineRows n (-getElem n 1 normalizedFirstRow) 1
-- | Extend a matrix to a given size adding a default element.
-- If the matrix already has the required size, nothing happens.
-- The matrix is /never/ reduced in size.
-- Example:
--
-- > ( 1 2 3 0 0 )
-- > ( 1 2 3 ) ( 4 5 6 0 0 )
-- > ( 4 5 6 ) ( 7 8 9 0 0 )
-- > extendTo 0 4 5 ( 7 8 9 ) = ( 0 0 0 0 0 )
--
-- The definition of 'extendTo' is based on 'setSize':
--
-- > extendTo e n m a = setSize e (max n $ nrows a) (max m $ ncols a) a
--
extendTo :: a -- ^ Element to add when extending.
-> Int -- ^ Minimal number of rows.
-> Int -- ^ Minimal number of columns.
-> Matrix a -> Matrix a
extendTo e n m a = setSize e (max n $ nrows a) (max m $ ncols a) a
-- | Set the size of a matrix to given parameters. Use a default element
-- for undefined entries if the matrix has been extended.
setSize :: a -- ^ Default element.
-> Int -- ^ Number of rows.
-> Int -- ^ Number of columns.
-> Matrix a
-> Matrix a
{-# INLINE setSize #-}
setSize e n m a@(M n0 m0 _ _ _ _) = matrix n m $ \(i,j) ->
if i <= n0 && j <= m0
then unsafeGet i j a
else e
-------------------------------------------------------
-------------------------------------------------------
---- WORKING WITH BLOCKS
-- | /O(1)/. Extract a submatrix given row and column limits.
-- Example:
--
-- > ( 1 2 3 )
-- > ( 4 5 6 ) ( 2 3 )
-- > submatrix 1 2 2 3 ( 7 8 9 ) = ( 5 6 )
submatrix :: Int -- ^ Starting row
-> Int -- ^ Ending row
-> Int -- ^ Starting column
-> Int -- ^ Ending column
-> Matrix a
-> Matrix a
{-# INLINE submatrix #-}
submatrix r1 r2 c1 c2 (M n m ro co w v)
| r1 < 1 || r1 > n = error $ "submatrix: starting row (" ++ show r1 ++ ") is out of range. Matrix has " ++ show n ++ " rows."
| c1 < 1 || c1 > m = error $ "submatrix: starting column (" ++ show c1 ++ ") is out of range. Matrix has " ++ show m ++ " columns."
| r2 < r1 || r2 > n = error $ "submatrix: ending row (" ++ show r2 ++ ") is out of range. Matrix has " ++ show n ++ " rows, and starting row is " ++ show r1 ++ "."
| c2 < c1 || c2 > m = error $ "submatrix: ending column (" ++ show c2 ++ ") is out of range. Matrix has " ++ show m ++ " columns, and starting column is " ++ show c1 ++ "."
| otherwise = M (r2-r1+1) (c2-c1+1) (ro+r1-1) (co+c1-1) w v
-- | /O(rows*cols)/. Remove a row and a column from a matrix.
-- Example:
--
-- > ( 1 2 3 )
-- > ( 4 5 6 ) ( 1 3 )
-- > minorMatrix 2 2 ( 7 8 9 ) = ( 7 9 )
minorMatrix :: Int -- ^ Row @r@ to remove.
-> Int -- ^ Column @c@ to remove.
-> Matrix a -- ^ Original matrix.
-> Matrix a -- ^ Matrix with row @r@ and column @c@ removed.
minorMatrix r0 c0 (M n m ro co w v) =
let r = r0 + ro
c = c0 + co
in M (n-1) (m-1) ro co (w-1) $ V.ifilter (\k _ -> let (i,j) = decode w k in i /= r && j /= c) v
-- | /O(1)/. Make a block-partition of a matrix using a given element as reference.
-- The element will stay in the bottom-right corner of the top-left corner matrix.
--
-- > ( ) ( | )
-- > ( ) ( ... | ... )
-- > ( x ) ( x | )
-- > splitBlocks i j ( ) = (-------------) , where x = a_{i,j}
-- > ( ) ( | )
-- > ( ) ( ... | ... )
-- > ( ) ( | )
--
-- Note that some blocks can end up empty. We use the following notation for these blocks:
--
-- > ( TL | TR )
-- > (---------)
-- > ( BL | BR )
--
-- Where T = Top, B = Bottom, L = Left, R = Right.
--
splitBlocks :: Int -- ^ Row of the splitting element.
-> Int -- ^ Column of the splitting element.
-> Matrix a -- ^ Matrix to split.
-> (Matrix a,Matrix a
,Matrix a,Matrix a) -- ^ (TL,TR,BL,BR)
{-# INLINE[1] splitBlocks #-}
splitBlocks i j a@(M n m _ _ _ _) =
( submatrix 1 i 1 j a , submatrix 1 i (j+1) m a
, submatrix (i+1) n 1 j a , submatrix (i+1) n (j+1) m a )
-- | Join blocks of the form detailed in 'splitBlocks'. Precisely:
--
-- > joinBlocks (tl,tr,bl,br) =
-- > (tl <|> tr)
-- > <->
-- > (bl <|> br)
joinBlocks :: (Matrix a,Matrix a,Matrix a,Matrix a) -> Matrix a
{-# INLINE[1] joinBlocks #-}
joinBlocks (tl,tr,bl,br) =
let n = nrows tl
nb = nrows bl
n' = n + nb
m = ncols tl
mr = ncols tr
m' = m + mr
en = encode m'
in M n' m' 0 0 m' $ V.create $ do
v <- MV.new (n'*m')
let wr = MV.write v
numLoop 1 n $ \i -> do
numLoop 1 m $ \j -> wr (en (i ,j )) $ tl ! (i,j)
numLoop 1 mr $ \j -> wr (en (i ,j+m)) $ tr ! (i,j)
numLoop 1 nb $ \i -> do
let i' = i+n
numLoop 1 m $ \j -> wr (en (i',j )) $ bl ! (i,j)
numLoop 1 mr $ \j -> wr (en (i',j+m)) $ br ! (i,j)
return v
{-# RULES
"matrix/splitAndJoin"
forall i j m. joinBlocks (splitBlocks i j m) = m
#-}
-- | Horizontally join two matrices. Visually:
--
-- > ( A ) <|> ( B ) = ( A | B )
--
-- Where both matrices /A/ and /B/ have the same number of rows.
-- /This condition is not checked/.
(<|>) :: Matrix a -> Matrix a -> Matrix a
{-# INLINE (<|>) #-}
m <|> m' =
let c = ncols m
in matrix (nrows m) (c + ncols m') $ \(i,j) ->
if j <= c then m ! (i,j) else m' ! (i,j-c)
-- | Vertically join two matrices. Visually:
--
-- > ( A )
-- > ( A ) <-> ( B ) = ( - )
-- > ( B )
--
-- Where both matrices /A/ and /B/ have the same number of columns.
-- /This condition is not checked/.
(<->) :: Matrix a -> Matrix a -> Matrix a
{-# INLINE (<->) #-}
m <-> m' =
let r = nrows m
in matrix (r + nrows m') (ncols m) $ \(i,j) ->
if i <= r then m ! (i,j) else m' ! (i-r,j)
-------------------------------------------------------
-------------------------------------------------------
---- MATRIX OPERATIONS
-- | Perform an operation element-wise.
-- The second matrix must have at least as many rows
-- and columns as the first matrix. If it's bigger,
-- the leftover items will be ignored.
-- If it's smaller, it will cause a run-time error.
-- You may want to use 'elementwiseUnsafe' if you
-- are definitely sure that a run-time error won't
-- arise.
elementwise :: (a -> b -> c) -> (Matrix a -> Matrix b -> Matrix c)
elementwise f m m' = matrix (nrows m) (ncols m) $
\k -> f (m ! k) (m' ! k)
-- | Unsafe version of 'elementwise', but faster.
elementwiseUnsafe :: (a -> b -> c) -> (Matrix a -> Matrix b -> Matrix c)
{-# INLINE elementwiseUnsafe #-}
elementwiseUnsafe f m m' = matrix (nrows m) (ncols m) $
\(i,j) -> f (unsafeGet i j m) (unsafeGet i j m')
infixl 6 +., -.
-- | Internal unsafe addition.
(+.) :: Num a => Matrix a -> Matrix a -> Matrix a
{-# INLINE (+.) #-}
(+.) = elementwiseUnsafe (+)
-- | Internal unsafe substraction.
(-.) :: Num a => Matrix a -> Matrix a -> Matrix a
{-# INLINE (-.) #-}
(-.) = elementwiseUnsafe (-)
-------------------------------------------------------
-------------------------------------------------------
---- MATRIX MULTIPLICATION
{- $mult
Four methods are provided for matrix multiplication.
* 'multStd':
Matrix multiplication following directly the definition.
This is the best choice when you know for sure that your
matrices are small.
* 'multStd2':
Matrix multiplication following directly the definition.
However, using a different definition from 'multStd'.
According to our benchmarks with this version, 'multStd2' is
around 3 times faster than 'multStd'.
* 'multStrassen':
Matrix multiplication following the Strassen's algorithm.
Complexity grows slower but also some work is added
partitioning the matrix. Also, it only works on square
matrices of order @2^n@, so if this condition is not
met, it is zero-padded until this is accomplished.
Therefore, its use is not recommended.
* 'multStrassenMixed':
This function mixes the previous methods.
It provides a better performance in general. Method @(@'*'@)@
of the 'Num' class uses this function because it gives the best
average performance. However, if you know for sure that your matrices are
small (size less than 500x500), you should use 'multStd' or 'multStd2' instead,
since 'multStrassenMixed' is going to switch to those functions anyway.
We keep researching how to get better performance for matrix multiplication.
If you want to be on the safe side, use ('*').
-}
-- | Standard matrix multiplication by definition.
multStd :: Num a => Matrix a -> Matrix a -> Matrix a
{-# INLINE multStd #-}
multStd a1@(M n m _ _ _ _) a2@(M n' m' _ _ _ _)
-- Checking that sizes match...
| m /= n' = error $ "Multiplication of " ++ sizeStr n m ++ " and "
++ sizeStr n' m' ++ " matrices."
| otherwise = multStd_ a1 a2
-- | Standard matrix multiplication by definition.
multStd2 :: Num a => Matrix a -> Matrix a -> Matrix a
{-# INLINE multStd2 #-}
multStd2 a1@(M n m _ _ _ _) a2@(M n' m' _ _ _ _)
-- Checking that sizes match...
| m /= n' = error $ "Multiplication of " ++ sizeStr n m ++ " and "
++ sizeStr n' m' ++ " matrices."
| otherwise = multStd__ a1 a2
-- | Standard matrix multiplication by definition, without checking if sizes match.
multStd_ :: Num a => Matrix a -> Matrix a -> Matrix a
{-# INLINE multStd_ #-}
multStd_ a@(M 1 1 _ _ _ _) b@(M 1 1 _ _ _ _) = M 1 1 0 0 1 $ V.singleton $ (a ! (1,1)) * (b ! (1,1))
multStd_ a@(M 2 2 _ _ _ _) b@(M 2 2 _ _ _ _) =
M 2 2 0 0 2 $
let -- A
a11 = a !. (1,1) ; a12 = a !. (1,2)
a21 = a !. (2,1) ; a22 = a !. (2,2)
-- B
b11 = b !. (1,1) ; b12 = b !. (1,2)
b21 = b !. (2,1) ; b22 = b !. (2,2)
in V.fromList
[ a11*b11 + a12*b21 , a11*b12 + a12*b22
, a21*b11 + a22*b21 , a21*b12 + a22*b22
]
multStd_ a@(M 3 3 _ _ _ _) b@(M 3 3 _ _ _ _) =
M 3 3 0 0 3 $
let -- A
a11 = a !. (1,1) ; a12 = a !. (1,2) ; a13 = a !. (1,3)
a21 = a !. (2,1) ; a22 = a !. (2,2) ; a23 = a !. (2,3)
a31 = a !. (3,1) ; a32 = a !. (3,2) ; a33 = a !. (3,3)
-- B
b11 = b !. (1,1) ; b12 = b !. (1,2) ; b13 = b !. (1,3)
b21 = b !. (2,1) ; b22 = b !. (2,2) ; b23 = b !. (2,3)
b31 = b !. (3,1) ; b32 = b !. (3,2) ; b33 = b !. (3,3)
in V.fromList
[ a11*b11 + a12*b21 + a13*b31 , a11*b12 + a12*b22 + a13*b32 , a11*b13 + a12*b23 + a13*b33
, a21*b11 + a22*b21 + a23*b31 , a21*b12 + a22*b22 + a23*b32 , a21*b13 + a22*b23 + a23*b33
, a31*b11 + a32*b21 + a33*b31 , a31*b12 + a32*b22 + a33*b32 , a31*b13 + a32*b23 + a33*b33
]
multStd_ a@(M n m _ _ _ _) b@(M _ m' _ _ _ _) = matrix n m' $ \(i,j) -> sum [ a !. (i,k) * b !. (k,j) | k <- [1 .. m] ]
multStd__ :: Num a => Matrix a -> Matrix a -> Matrix a
{-# INLINE multStd__ #-}
multStd__ a b = matrix r c $ \(i,j) -> dotProduct (V.unsafeIndex avs $ i - 1) (V.unsafeIndex bvs $ j - 1)
where
r = nrows a
avs = V.generate r $ \i -> getRow (i+1) a
c = ncols b
bvs = V.generate c $ \i -> getCol (i+1) b
dotProduct :: Num a => V.Vector a -> V.Vector a -> a
{-# INLINE dotProduct #-}
dotProduct v1 v2 = numLoopFold 0 (V.length v1 - 1) 0 $
\r i -> V.unsafeIndex v1 i * V.unsafeIndex v2 i + r
{-
dotProduct v1 v2 = go (V.length v1 - 1) 0
where
go (-1) a = a
go i a = go (i-1) $ (V.unsafeIndex v1 i) * (V.unsafeIndex v2 i) + a
-}
first :: (a -> Bool) -> [a] -> a
first f = go
where
go (x:xs) = if f x then x else go xs
go _ = error "first: no element match the condition."
-- | Strassen's algorithm over square matrices of order @2^n@.
strassen :: Num a => Matrix a -> Matrix a -> Matrix a
-- Trivial 1x1 multiplication.
strassen a@(M 1 1 _ _ _ _) b@(M 1 1 _ _ _ _) = M 1 1 0 0 1 $ V.singleton $ (a ! (1,1)) * (b ! (1,1))
-- General case guesses that the input matrices are square matrices
-- whose order is a power of two.
strassen a b = joinBlocks (c11,c12,c21,c22)
where
-- Size of the subproblem is halved.
n = div (nrows a) 2
-- Split of the original problem into smaller subproblems.
(a11,a12,a21,a22) = splitBlocks n n a
(b11,b12,b21,b22) = splitBlocks n n b
-- The seven Strassen's products.
p1 = strassen (a11 + a22) (b11 + b22)
p2 = strassen (a21 + a22) b11
p3 = strassen a11 (b12 - b22)
p4 = strassen a22 (b21 - b11)
p5 = strassen (a11 + a12) b22
p6 = strassen (a21 - a11) (b11 + b12)
p7 = strassen (a12 - a22) (b21 + b22)
-- Merging blocks
c11 = p1 + p4 - p5 + p7
c12 = p3 + p5
c21 = p2 + p4
c22 = p1 - p2 + p3 + p6
-- | Strassen's matrix multiplication.
multStrassen :: Num a => Matrix a -> Matrix a -> Matrix a
multStrassen a1@(M n m _ _ _ _) a2@(M n' m' _ _ _ _)
| m /= n' = error $ "Multiplication of " ++ sizeStr n m ++ " and "
++ sizeStr n' m' ++ " matrices."
| otherwise =
let mx = maximum [n,m,n',m']
n2 = first (>= mx) $ fmap (2^) [(0 :: Int)..]
b1 = setSize 0 n2 n2 a1
b2 = setSize 0 n2 n2 a2
in submatrix 1 n 1 m' $ strassen b1 b2
strmixFactor :: Int
strmixFactor = 300
-- | Strassen's mixed algorithm.
strassenMixed :: Num a => Matrix a -> Matrix a -> Matrix a
{-# SPECIALIZE strassenMixed :: Matrix Double -> Matrix Double -> Matrix Double #-}
{-# SPECIALIZE strassenMixed :: Matrix Int -> Matrix Int -> Matrix Int #-}
{-# SPECIALIZE strassenMixed :: Matrix Rational -> Matrix Rational -> Matrix Rational #-}
strassenMixed a b
| r < strmixFactor = multStd__ a b
| odd r = let r' = r + 1
a' = setSize 0 r' r' a
b' = setSize 0 r' r' b
in submatrix 1 r 1 r $ strassenMixed a' b'
| otherwise =
M r r 0 0 r $ V.create $ do
v <- MV.unsafeNew (r*r)
let en = encode r
n' = n + 1
-- c11 = p1 + p4 - p5 + p7
sequence_ [ MV.write v k $
unsafeGet i j p1
+ unsafeGet i j p4
- unsafeGet i j p5
+ unsafeGet i j p7
| i <- [1..n]
, j <- [1..n]
, let k = en (i,j)
]
-- c12 = p3 + p5
sequence_ [ MV.write v k $
unsafeGet i j' p3
+ unsafeGet i j' p5
| i <- [1..n]
, j <- [n'..r]
, let k = en (i,j)
, let j' = j - n
]
-- c21 = p2 + p4
sequence_ [ MV.write v k $
unsafeGet i' j p2
+ unsafeGet i' j p4
| i <- [n'..r]
, j <- [1..n]
, let k = en (i,j)
, let i' = i - n