-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrandomization.py
131 lines (111 loc) · 5.22 KB
/
randomization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import os
import random
import re
import subprocess as sp
from preprocessing import *
def getResultsData(file_name):
'''
-> Reads a results file and maps rankings of
a topic with its topic ID.
'''
result_data = defaultdict(dict)
with open(f"tra/{file_name}_results.txt", "r") as f:
lines = f.readlines()
doc_score_dict = defaultdict(float)
last_topic = "1"
for line in lines:
tokens = line.encode().decode("utf-8").split()
topic = tokens[0]
docID = tokens[2]
score = tokens[4]
# Appends dictionary if all the topic related
# documents are added
if topic != last_topic:
result_data[last_topic] = doc_score_dict
last_topic = topic
doc_score_dict = defaultdict(float)
doc_score_dict[docID] = score
return result_data
def calculatePerformanceValues(file_name):
'''
-> Runs the provided trec_eval evaluation tool
via subprocess and retrieves the results within a
cleansed form.
'''
result = sp.run([f"./trec_eval -m map -m ndcg -m P.5,10 relevancy-judgements.txt tra/{file_name}_results.txt"], stdout=sp.PIPE, shell=True)
result = result.stdout.decode("utf-8", errors="replace")
tokens = result.split()
tokens = [float(token) for ix, token in enumerate(tokens) if ix % 3 == 2]
return tuple(tokens)
def randomizationTest(first_sys_name, second_sys_name):
'''
-> Applies randomization test to evaluate the statistical
side of our models.
'''
all_first_results = getResultsData(first_sys_name)
all_second_results = getResultsData(second_sys_name)
# initial_differences
initial_first_performance_values = calculatePerformanceValues(first_sys_name)
inital_second_performance_values = calculatePerformanceValues(second_sys_name)
initial_difference_MAP = abs(initial_first_performance_values[0] - inital_second_performance_values[0])
initial_difference_P5 = abs(initial_first_performance_values[1] - inital_second_performance_values[1])
initial_difference_P10 = abs(initial_first_performance_values[2] - inital_second_performance_values[2])
initial_difference_NDCG = abs(initial_first_performance_values[3] - inital_second_performance_values[3])
counter_MAP = 0
counter_P5 = 0
counter_P10 = 0
counter_NDCG = 0
# We've decided to run the algorithm 1000 times.
R = 1000
# We've selected our seed to provide consecutive
# repeatable outputs.
random.seed(47)
for ix in range(0, R):
if ix % 100 == 0:
print(f"Iteration: {ix}")
for topic in all_first_results.keys():
first_result = all_first_results[topic]
second_result = all_second_results[topic]
# We've swapped the rankings of the same topic
# between two models
# To store current state, we've created two
# temporary files to preserve data and calculate
# absolute difference between those two outputs
if random.random() <= 0.5:
write_to_file(topic, first_result, f"temp_{first_sys_name}")
write_to_file(topic, second_result, f"temp_{second_sys_name}")
else:
write_to_file(topic, second_result, f"temp_{first_sys_name}")
write_to_file(topic, first_result, f"temp_{second_sys_name}")
# subprocess get new value
current_first_performance_values = calculatePerformanceValues(f"temp_{first_sys_name}")
current_second_performance_values = calculatePerformanceValues(f"temp_{second_sys_name}")
# Calculating the current values
current_difference_MAP = abs(current_first_performance_values[0] - current_second_performance_values[0])
current_difference_P5 = abs(current_first_performance_values[1] - current_second_performance_values[1])
current_difference_P10 = abs(current_first_performance_values[2] - current_second_performance_values[2])
current_difference_NDCG = abs(current_first_performance_values[3] - current_second_performance_values[3])
if current_difference_MAP >= initial_difference_MAP:
counter_MAP += 1
if current_difference_P5 >= initial_difference_P5:
counter_P5 += 1
if current_difference_P10 >= initial_difference_P10:
counter_P10 += 1
if current_difference_NDCG >= initial_difference_NDCG:
counter_NDCG += 1
# Removing the temporary files
sp.run([f"rm -rf tra/temp_{first_sys_name}_results.txt"], shell=True)
sp.run([f"rm -rf tra/temp_{second_sys_name}_results.txt"], shell=True)
# Calculating the final p values for each measure
p_value_P5 = (counter_P5 + 1) / (R + 1)
p_value_P10 = (counter_P10 + 1) / (R + 1)
p_value_NDCG = (counter_NDCG + 1) / (R + 1)
p_value_MAP = (counter_MAP + 1) / (R + 1)
print(first_sys_name, "---", second_sys_name)
print()
print("p value for MAP: \t", p_value_MAP)
print("p value for P5: \t", p_value_P5)
print("p value for P10: \t", p_value_P10)
print("p value for NDCG: \t", p_value_NDCG)
if __name__ == "__main__":
randomizationTest(sys.argv[1], sys.argv[2])