-
Notifications
You must be signed in to change notification settings - Fork 0
/
python
79 lines (63 loc) · 2.22 KB
/
python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
data=pd.read_csv('C:/Users/KARMUKIL/Downloads/creditcard.csv')
print(data.columns)
data = data.sample(frac=0.1, random_state = 1)
print(data.shape)
print(data.describe())
data.hist(figsize = (20, 20))
plt.show()
Fraud = data[data['Class'] == 1]
Valid = data[data['Class'] == 0]
outlier_fraction = len(Fraud)/float(len(Valid))
print(outlier_fraction)
print('Fraud Cases: {}'.format(len(data[data['Class'] == 1])))
print('Valid Transactions: {}'.format(len(data[data['Class'] == 0])))
corrmat = data.corr()
fig = plt.figure(figsize = (12, 9))
sns.heatmap(corrmat, vmax = .8, square = True)
plt.show()
columns = data.columns.tolist()
# Filter the columns to remove data we do not want
columns = [c for c in columns if c not in ["Class"]]
# Store the variable we'll be predicting on
target = "Class"
X = data[columns]
Y = data[target]
# Print shapes
print(X.shape)
print(Y.shape)
from sklearn.metrics import classification_report, accuracy_score
from sklearn.ensemble import IsolationForest
from sklearn.neighbors import LocalOutlierFactor
# define random states
state = 1
# define outlier detection tools to be compared
classifiers = {
"Isolation Forest": IsolationForest(max_samples=len(X),
contamination=outlier_fraction,
random_state=state),
"Local Outlier Factor": LocalOutlierFactor(
n_neighbors=20,
contamination=outlier_fraction)}
plt.figure(figsize=(9, 7))
n_outliers = len(Fraud)
for i, (clf_name, clf) in enumerate(classifiers.items()):
# fit the data and tag outliers
if clf_name == "Local Outlier Factor":
y_pred = clf.fit_predict(X)
scores_pred = clf.negative_outlier_factor_
else:
clf.fit(X)
scores_pred = clf.decision_function(X)
y_pred = clf.predict(X)
# Reshape the prediction values to 0 for valid, 1 for fraud.
y_pred[y_pred == 1] = 0
y_pred[y_pred == -1] = 1
n_errors = (y_pred != Y).sum()
# Run classification metrics
print('{}: {}'.format(clf_name, n_errors))
print(accuracy_score(Y, y_pred))
print(classification_report(Y, y_pred))