forked from hack-mans/PanoHead
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset_tool_seg.py
376 lines (314 loc) · 15.5 KB
/
dataset_tool_seg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
"""Tool for creating ZIP/PNG based datasets."""
import functools
import gzip
import io
import json
import os
import pickle
import re
import sys
import tarfile
import zipfile
from pathlib import Path
from typing import Callable, Optional, Tuple, Union
import click
import numpy as np
import PIL.Image
from tqdm import tqdm
#----------------------------------------------------------------------------
def error(msg):
print('Error: ' + msg)
sys.exit(1)
#----------------------------------------------------------------------------
def parse_tuple(s: str) -> Tuple[int, int]:
'''Parse a 'M,N' or 'MxN' integer tuple.
Example:
'4x2' returns (4,2)
'0,1' returns (0,1)
'''
m = re.match(r'^(\d+)[x,](\d+)$', s)
if m:
return (int(m.group(1)), int(m.group(2)))
raise ValueError(f'cannot parse tuple {s}')
#----------------------------------------------------------------------------
def maybe_min(a: int, b: Optional[int]) -> int:
if b is not None:
return min(a, b)
return a
#----------------------------------------------------------------------------
def file_ext(name: Union[str, Path]) -> str:
return str(name).split('.')[-1]
#----------------------------------------------------------------------------
def is_image_ext(fname: Union[str, Path]) -> bool:
ext = file_ext(fname).lower()
return f'.{ext}' in PIL.Image.EXTENSION # type: ignore
#----------------------------------------------------------------------------
def open_image_folder(img_source_dir, seg_source_dir, *, use_basename: bool, max_images: Optional[int]):
input_images = [str(f) for f in sorted(Path(img_source_dir).rglob('*')) if is_image_ext(f) and os.path.isfile(f)]
# Build path dictionary for segmentation masks
seg_input_images = [str(f) for f in sorted(Path(seg_source_dir).rglob('*')) if is_image_ext(f) and os.path.isfile(f)]
seg_images_dict = {}
for fname in seg_input_images:
arch_fname = os.path.relpath(fname, seg_source_dir)
arch_fname = arch_fname.replace('\\', '/')
if use_basename:
arch_fname = os.path.basename(arch_fname)
arch_fname = os.path.splitext(arch_fname)[0] # ignore extension
seg_images_dict[arch_fname] = fname
# Load labels.
labels = {}
meta_fname = os.path.join(img_source_dir, 'dataset.json')
if os.path.isfile(meta_fname):
with open(meta_fname, 'r') as file:
labels = json.load(file)['labels']
if labels is not None:
labels = { x[0]: x[1] for x in labels }
else:
labels = {}
print("original labels:", len(labels))
max_idx = maybe_min(len(input_images), max_images)
def iterate_images():
idx = 0
for _, fname in enumerate(input_images):
arch_fname = os.path.relpath(fname, img_source_dir)
arch_fname = arch_fname.replace('\\', '/')
if use_basename:
arch_fname = os.path.basename(arch_fname)
img = np.array(PIL.Image.open(fname))
if len(labels) > 0 and not arch_fname in labels:
print("Label not found:", arch_fname, labels.get(arch_fname))
continue # Ignore images without label
if not os.path.splitext(arch_fname)[0] in seg_images_dict:
print("Segmentation not found:", os.path.splitext(arch_fname)[0])
continue # Ignore images without segmentation label
else:
seg = np.array(PIL.Image.open(seg_images_dict[os.path.splitext(arch_fname)[0]]))
yield dict(img=img, seg=seg, label=labels.get(arch_fname), arch_fname=arch_fname)
idx += 1
if idx >= max_idx:
break
return max_idx, iterate_images()
def make_transform(
transform: Optional[str],
output_width: Optional[int],
output_height: Optional[int],
resample: Optional[int],
) -> Callable[[np.ndarray], Optional[np.ndarray]]:
def scale(width, height, img):
w = img.shape[1]
h = img.shape[0]
if width == w and height == h:
return img
img = PIL.Image.fromarray(img)
ww = width if width is not None else w
hh = height if height is not None else h
img = img.resize((ww, hh), resample)
return np.array(img)
def center_crop(width, height, img):
crop = np.min(img.shape[:2])
img = img[(img.shape[0] - crop) // 2 : (img.shape[0] + crop) // 2, (img.shape[1] - crop) // 2 : (img.shape[1] + crop) // 2]
img = PIL.Image.fromarray(img, 'RGB')
img = img.resize((width, height), resample)
return np.array(img)
def center_crop_wide(width, height, img):
ch = int(np.round(width * img.shape[0] / img.shape[1]))
if img.shape[1] < width or ch < height:
return None
img = img[(img.shape[0] - ch) // 2 : (img.shape[0] + ch) // 2]
img = PIL.Image.fromarray(img, 'RGB')
img = img.resize((width, height), resample)
img = np.array(img)
canvas = np.zeros([width, width, 3], dtype=np.uint8)
canvas[(width - height) // 2 : (width + height) // 2, :] = img
return canvas
if transform is None:
return functools.partial(scale, output_width, output_height)
if transform == 'center-crop':
if (output_width is None) or (output_height is None):
error ('must specify --resolution=WxH when using ' + transform + 'transform')
return functools.partial(center_crop, output_width, output_height)
if transform == 'center-crop-wide':
if (output_width is None) or (output_height is None):
error ('must specify --resolution=WxH when using ' + transform + ' transform')
return functools.partial(center_crop_wide, output_width, output_height)
assert False, 'unknown transform'
#----------------------------------------------------------------------------
def open_dest(dest: str) -> Tuple[str, Callable[[str, Union[bytes, str]], None], Callable[[], None]]:
dest_ext = file_ext(dest)
if dest_ext == 'zip':
if os.path.dirname(dest) != '':
os.makedirs(os.path.dirname(dest), exist_ok=True)
zf = zipfile.ZipFile(file=dest, mode='w', compression=zipfile.ZIP_STORED)
def zip_write_bytes(fname: str, data: Union[bytes, str]):
zf.writestr(fname, data)
return '', zip_write_bytes, zf.close
else:
# If the output folder already exists, check that is is
# empty.
#
# Note: creating the output directory is not strictly
# necessary as folder_write_bytes() also mkdirs, but it's better
# to give an error message earlier in case the dest folder
# somehow cannot be created.
if os.path.isdir(dest) and len(os.listdir(dest)) != 0:
error('--dest folder must be empty')
os.makedirs(dest, exist_ok=True)
def folder_write_bytes(fname: str, data: Union[bytes, str]):
os.makedirs(os.path.dirname(fname), exist_ok=True)
with open(fname, 'wb') as fout:
if isinstance(data, str):
data = data.encode('utf8')
fout.write(data)
return dest, folder_write_bytes, lambda: None
#----------------------------------------------------------------------------
@click.command()
@click.pass_context
@click.option('--img_source', help='Directory or archive name for input dataset', required=True, metavar='PATH')
@click.option('--seg_source', help='Directory or archive name for input dataset', required=True, metavar='PATH')
@click.option('--img_dest', help='Output directory or archive name for output dataset', required=True, metavar='PATH')
@click.option('--seg_dest', help='Output directory or archive name for output dataset', required=True, metavar='PATH')
@click.option('--max-images', help='Output only up to `max-images` images', type=int, default=None)
@click.option('--transform', help='Input crop/resize mode', type=click.Choice(['center-crop', 'center-crop-wide']))
@click.option('--resolution', help='Output resolution (e.g., \'512x512\')', metavar='WxH', type=parse_tuple)
@click.option('--use_basename', help='Use basename as identifier for labels and masks', default=False, metavar="BOOL")
@click.option('--ext', help='Output format', type=click.Choice(['png', 'jpg']), default="png")
def convert_dataset(
ctx: click.Context,
img_source: str,
seg_source: str,
img_dest: str,
seg_dest: str,
max_images: Optional[int],
transform: Optional[str],
resolution: Optional[Tuple[int, int]],
use_basename: Optional[bool],
ext: Optional[str],
):
"""Convert an image dataset into a dataset archive usable with StyleGAN2 ADA PyTorch.
The input dataset format is guessed from the --source argument:
\b
--source *_lmdb/ Load LSUN dataset
--source cifar-10-python.tar.gz Load CIFAR-10 dataset
--source train-images-idx3-ubyte.gz Load MNIST dataset
--source path/ Recursively load all images from path/
--source dataset.zip Recursively load all images from dataset.zip
Specifying the output format and path:
\b
--dest /path/to/dir Save output files under /path/to/dir
--dest /path/to/dataset.zip Save output files into /path/to/dataset.zip
The output dataset format can be either an image folder or an uncompressed zip archive.
Zip archives makes it easier to move datasets around file servers and clusters, and may
offer better training performance on network file systems.
Images within the dataset archive will be stored as uncompressed PNG.
Uncompresed PNGs can be efficiently decoded in the training loop.
Class labels are stored in a file called 'dataset.json' that is stored at the
dataset root folder. This file has the following structure:
\b
{
"labels": [
["00000/img00000000.png",6],
["00000/img00000001.png",9],
... repeated for every image in the datase
["00049/img00049999.png",1]
]
}
If the 'dataset.json' file cannot be found, the dataset is interpreted as
not containing class labels.
Image scale/crop and resolution requirements:
Output images must be square-shaped and they must all have the same power-of-two
dimensions.
To scale arbitrary input image size to a specific width and height, use the
--resolution option. Output resolution will be either the original
input resolution (if resolution was not specified) or the one specified with
--resolution option.
Use the --transform=center-crop or --transform=center-crop-wide options to apply a
center crop transform on the input image. These options should be used with the
--resolution option. For example:
\b
python dataset_tool.py --source LSUN/raw/cat_lmdb --dest /tmp/lsun_cat \\
--transform=center-crop-wide --resolution=512x384
"""
PIL.Image.init() # type: ignore
if img_dest == '' or seg_dest == '':
ctx.fail('--dest output filename or directory must not be an empty string')
num_files, input_iter = open_image_folder(img_source, seg_source, use_basename=use_basename, max_images=max_images)
archive_root_dir_img, save_bytes_img, close_dest_img = open_dest(img_dest)
archive_root_dir_seg, save_bytes_seg, close_dest_seg = open_dest(seg_dest)
if resolution is None: resolution = (None, None)
transform_img = make_transform(transform, *resolution, resample=PIL.Image.LANCZOS)
transform_seg = make_transform(transform, *resolution, resample=PIL.Image.LANCZOS)
dataset_attrs = None
labels = []
fnames = []
for idx, image in tqdm(enumerate(input_iter), total=num_files):
idx_str = f'{idx:08d}'
img_archive_fname = f'{idx_str[:5]}/img{idx_str}.{ext}'
seg_archive_fname = f'{idx_str[:5]}/img{idx_str}.png'
# Apply crop and resize.
img = transform_img(image['img'])
seg = transform_seg(image['seg'])
# Transform may drop images.
if img is None or seg is None:
continue
# Error check to require uniform image attributes across
# the whole dataset.
img_channels = img.shape[2] if img.ndim == 3 else 1
seg_channels = seg.shape[2] if seg.ndim == 3 else 1
cur_image_attrs = {
'width': img.shape[1],
'height': img.shape[0],
'img_channels': img_channels,
'seg_channels': seg_channels,
}
if dataset_attrs is None:
dataset_attrs = cur_image_attrs
width = dataset_attrs['width']
height = dataset_attrs['height']
if width != height:
error(f'Image dimensions after scale and crop are required to be square. Got {width}x{height}')
if dataset_attrs['img_channels'] not in [1, 3, 4]:
error('Input images must be stored as RGB or grayscale')
if dataset_attrs['seg_channels'] not in [1, 3]:
error('Input images must be stored as RGB or grayscale')
if width != 2 ** int(np.floor(np.log2(width))):
error('Image width/height after scale and crop are required to be power-of-two')
elif dataset_attrs != cur_image_attrs:
err = [f' dataset {k}/cur image {k}: {dataset_attrs[k]}/{cur_image_attrs[k]}' for k in dataset_attrs.keys()] # pylint: disable=unsubscriptable-object
error(f'Image {img_archive_fname} attributes must be equal across all images of the dataset. Got:\n' + '\n'.join(err))
# Save the image as an target format
img = PIL.Image.fromarray(img, { 1: 'L', 3: 'RGB', 4: 'RGBA'}[img_channels])
if img_channels == 4: img = img.convert('RGB')
image_bits = io.BytesIO()
if ext == "png":
img.save(image_bits, format='png', compress_level=0, optimize=False)
else:
img.save(image_bits, format='jpeg', quality=100)
save_bytes_img(os.path.join(archive_root_dir_img, img_archive_fname), image_bits.getbuffer())
# Save the segmentation as an uncompressed PNG.
seg = PIL.Image.fromarray(seg, { 1: 'L', 3: 'RGB'}[seg_channels])
# if seg_channels == 4: seg = seg.convert('RGB')
image_bits = io.BytesIO()
seg.save(image_bits, format='png', compress_level=0, optimize=False)
save_bytes_seg(os.path.join(archive_root_dir_seg, seg_archive_fname), image_bits.getbuffer())
# Append condition label
labels.append([img_archive_fname, image['label']] if image['label'] is not None else None)
fnames.append([img_archive_fname, image['arch_fname']])
metadata = {
'labels': labels if all(x is not None for x in labels) else None,
'fnames': fnames if all(x is not None for x in fnames) else None
}
save_bytes_img(os.path.join(archive_root_dir_img, 'dataset.json'), json.dumps(metadata))
close_dest_img()
close_dest_seg()
print("# images: ", len(labels))
print('labeled: ', metadata['labels'] is not None)
#----------------------------------------------------------------------------
if __name__ == "__main__":
convert_dataset() # pylint: disable=no-value-for-parameter