-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
165 lines (132 loc) · 5.86 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import os
import random
import torch
from torch.backends import cudnn
from torch.utils.tensorboard import SummaryWriter
from eval import validate
from ss.model.PFENet import PFENet
from ss.utils.data_collection import AverageMeter
from ss.utils.pfenet_poly_learn_rate import poly_learning_rate
from ss.utils.train_eval_utils import get_parser, get_logger, get_train_loader, get_val_loader, set_seed, get_save_path
def worker_init_fn(worker_id):
random.seed(args.manual_seed + worker_id)
def main():
args = get_parser()
cudnn.benchmark = False
cudnn.deterministic = True
set_seed(args.manual_seed)
main_worker(args)
def main_worker(argss):
global args
args = argss
if args.model == 'pfenet':
model = PFENet(backbone=args.backbone, self_supervision=args.ss, prior=args.prior)
# get trainable layers and freeze other layers
trainable_layers = model.comparison_layers
freeze_layers = model.backbone_layers
for l in freeze_layers:
for param in l.parameters():
param.requires_grad = False
else:
raise ValueError(f'do not support model {args.model}')
# optimiser
optim_params = [{'params': l.parameters()} for l in trainable_layers]
optimizer = torch.optim.SGD(
optim_params, lr=args.base_lr, momentum=args.momentum, weight_decay=args.weight_decay
)
# initialise logger and writer
global logger, writer
logger = get_logger()
save_path = get_save_path(args)
writer = SummaryWriter(save_path)
logger.info("=> creating model ...")
model = torch.nn.DataParallel(model.cuda())
resume_ckpt = f'{save_path}/last_epoch.pth'
if os.path.isfile(resume_ckpt):
logger.info("=> loading checkpoint '{}'".format(resume_ckpt))
checkpoint = torch.load(resume_ckpt)
start_epoch = checkpoint['epoch'] + 1
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
else:
logger.info("=> no checkpoint found at '{}'".format(save_path))
start_epoch = 0
train_loader = get_train_loader(args)
val_loader = get_val_loader(args)
max_iou = 0.
for epoch in range(start_epoch, args.epochs):
set_seed(args.manual_seed + epoch)
# train
train_result = train(train_loader, val_loader, model, optimizer, epoch, max_iou, save_path)
for k, v in train_result.items():
writer.add_scalar(k + '_train', v, epoch)
last_ckpt_filename = save_path + '/last_epoch.pth'
logger.info('Saving checkpoint to: ' + last_ckpt_filename)
torch.save({'epoch': epoch, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict()},
f'{save_path}/last_epoch.pth')
def train(train_loader, val_loader, model, optimizer, epoch, max_iou, save_path):
main_loss_meter = AverageMeter()
aux_loss_meter = AverageMeter()
self_supervised_loss_meter = AverageMeter()
loss_meter = AverageMeter()
model.train()
max_iter = args.epochs * len(train_loader)
for i, batch in enumerate(train_loader):
current_iter = epoch * len(train_loader) + i + 1
if current_iter % 1000 == 0:
with torch.no_grad():
_, class_df = validate(val_loader, model, args,logger)
class_result_dict = class_df.loc[:, 'mean'].to_dict()
for k, v in class_result_dict.items():
writer.add_scalar(k + '_val', v, current_iter)
model.train()
# overwrite best checkpoint
new_iou = class_result_dict['iou']
if new_iou > max_iou:
max_iou = new_iou
filename = save_path + '/train_epoch_' + str(epoch) + '_' + str(new_iou) + '.pth'
logger.info('Saving checkpoint to: ' + filename)
torch.save(
{'epoch': epoch, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict()},
filename
)
if args.model == 'pfenet':
poly_learning_rate(
optimizer, args.base_lr, current_iter, max_iter,
)
for k, v in batch.items():
if isinstance(v, torch.Tensor):
batch[k] = v.cuda(non_blocking=True)
out_dict = model(batch)
# set other training and val classes to background
target = batch['q_y']
target[target == 2] = 0
target[target == 3] = 0
main_loss = torch.mean(out_dict['main_loss'])
aux_loss = torch.mean(out_dict['aux_loss'])
self_supervised_loss = torch.mean(out_dict['self_supervised_loss'])
loss = main_loss + aux_loss + self_supervised_loss * args.alpha
optimizer.zero_grad()
loss.backward(retain_graph=True)
optimizer.step()
main_loss_meter.update(main_loss.item())
aux_loss_meter.update(aux_loss.item())
self_supervised_loss_meter.update(self_supervised_loss.item())
loss_meter.update(loss.item())
# log iou
writer.add_scalar('main_loss_train_batch', main_loss_meter.val, current_iter)
writer.add_scalar('self_supervised_loss_batch', self_supervised_loss_meter.val, current_iter)
if (i + 1) % 100 == 0:
logger.info(f'Epoch: [{epoch + 1}/{args.epochs}][{i + 1}/{len(train_loader)}] ')
logger.info(f'Loss {loss_meter.val:.4f}')
logger.info(f'MainLoss {main_loss_meter.val:.4f} ')
logger.info(f'AuxLoss {aux_loss_meter.val:.4f} ')
logger.info(f'SelfSupervisedLoss {self_supervised_loss_meter.val:.4f}')
logger.info('Train result at epoch [{}/{}]: '.format(epoch, args.epochs))
result = {
'main_loss': main_loss_meter.avg,
'self_supervised_loss': self_supervised_loss_meter.avg
}
return result
if __name__ == '__main__':
main()