-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrainer.py
220 lines (206 loc) · 13.1 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
from dataloaders.mg_emo_dataset import character_emo_dataset
from models.mlp import mlp_char, mlp_scene
from models.tx_encoder import tx_char, tx_scene
from models.emotx_1cls import Emotx_1CLS
from models.emotx import EmoTx
from omegaconf import OmegaConf
from pathlib import Path
from torch.utils.data import DataLoader
from tqdm import tqdm
from utils.train_eval_utils import set_seed, save_config, train
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import utils.mg_utils as utils
import wandb
import yaml
class trainer(object):
def __init__(self, config):
"""
Initialize the trainer class with the config file needed for training.
Sets the seed, device, dataloaders and model.
Args:
config (dict): Config file containing all the hyperparameters for training.
"""
set_seed(config["seed"])
self.config = config
self.config_sanity_check()
data_split = utils.read_train_val_test_splits(config["resource_path"])
self.train_dataset = character_emo_dataset(config=config,
movie_ids=data_split["train"],
split_type="train",
random_feat_selection=config["random_feat_selection"],
with_srt=config["use_srt_feats"])
self.emo2id = self.train_dataset.get_emo2id_map()
self.val_dataset = character_emo_dataset(config=config,
movie_ids=data_split["val"],
split_type="val",
random_feat_selection=False,
with_srt=config["use_srt_feats"],
emo2id=self.emo2id)
self.train_dataloader = DataLoader(self.train_dataset,
batch_size=config["batch_size"],
shuffle=True,
num_workers=config["num_cpus"],
collate_fn=self.train_dataset.collate)
self.val_dataloader = DataLoader(self.val_dataset,
batch_size=config["batch_size"],
shuffle=False,
num_workers=config["num_cpus"],
collate_fn=self.val_dataset.collate)
self.device = torch.device('cuda:{}'.format(config["gpu_id"]) if torch.cuda.is_available() else 'cpu')
torch.cuda.set_device(self.device)
self.epochs = config["epochs"]
self.scene_feat_dim = config["feat_info"][config["scene_feat_type"]]["scene_feat_dim"]
self.char_feat_dim = config["feat_info"][config["face_feat_type"]]["face_feat_dim"]
self.srt_feat_dim = int(config["feat_info"][config["srt_feat_model"]]["srt_feat_dim"])
self.num_pos_embeddings = int(config["max_possible_vid_frame_no"]/config["feat_sampling_rate"])
if config["model_no"] == 1.1:
self.model = mlp_char(self.train_dataset.top_k, self.char_feat_dim, self.device).to(self.device)
elif config["model_no"] == 1.2:
self.model = mlp_scene(self.train_dataset.top_k, self.scene_feat_dim, self.device).to(self.device)
elif config["model_no"] == 2.1:
self.model = tx_char(self.train_dataset.top_k, self.char_feat_dim, self.device).to(self.device)
elif config["model_no"] == 2.2:
self.model = tx_scene(self.train_dataset.top_k, self.scene_feat_dim, self.device).to(self.device)
elif config["model_no"] == 3.0:
self.model = Emotx_1CLS(self.train_dataset.top_k,
self.num_pos_embeddings,
self.scene_feat_dim,
self.char_feat_dim,
self.srt_feat_dim,
config["num_enc_layers"],
config["num_chars"],
config["max_feats"]).to(self.device)
elif config["model_no"] == 4.0:
self.model = EmoTx(self.train_dataset.top_k,
self.num_pos_embeddings,
self.scene_feat_dim,
self.char_feat_dim,
self.srt_feat_dim,
config["num_enc_layers"],
config["num_chars"],
config["max_feats"]).to(self.device)
else:
raise NotImplementedError("Given model number does not exists")
model_id2st_map = {
"1.1": "Char_MLP",
"1.2": "Scene_MLP",
"2.1": "Char_TxEncoder",
"2.2": "Scene_TxEncoder",
"3.0": "Emotx_1CLS",
"4.0": "Emotx"
}
print("Selected model {}".format(model_id2st_map[str(config["model_no"])]))
self.save_path = Path(config["save_path"])
def config_sanity_check(self):
"""
Sanity check for the config file to ensure that the config file is correct and no errors are made in the config file by the user.
Check 1: If the user has selected to use scene or char features or srt features. Atleast one of them should be enabled.
Check 2: If the user has selected to get scene or char targets. Atleast one of them should be enabled.
Check 3: If the user has selected to use srt features, then the model number should be 3.0 or 4.0.
Check 4: If the user has selected to use srt features, then the user should select to use srt cls only if model number is 3.0 or 4.0.
Check 5: If model number is 3.0 or 4.0, the max_feats must be same as max_srt_feats.
Check 6: If model number is 1.1 or 2.1, then the user should not select to use srt features and scene features.
Moreover joint_character_modeling should be disabled and only character targets must be enabled.
Check 7: If model number is 1.2 or 2.2, then the user should not select to use srt features and char features. Moreover only scene targets must be enabled.
"""
assert(self.config["use_scene_feats"] or self.config["use_char_feats"] or self.config["use_srt_feats"])
assert(self.config["get_scene_targets"] or self.config["get_char_targets"])
assert((self.config["model_no"] in [3.0, 4.0] and self.config["use_srt_feats"]) or not self.config["use_srt_feats"])
assert(self.config["model_no"] not in [3.0, 4.0] or (self.config["model_no"] in [3.0, 4.0] and \
self.config["use_srt_cls_only"]))
assert(self.config["model_no"] not in [3.0, 4.0] or (self.config["model_no"] in [3.0, 4.0] and \
self.config["max_feats"] == self.config["max_srt_feats"]))
assert(self.config["model_no"] not in [1.1, 2.1] or (self.config["model_no"] in [1.1, 2.1] and \
self.config["use_char_feats"] and \
self.config["get_char_targets"] and \
not self.config["joint_character_modeling"] and \
not self.config["use_scene_feats"] and \
not self.config["use_srt_feats"] and \
not self.config["get_scene_targets"]))
assert(self.config["model_no"] not in [1.2, 2.2] or (self.config["model_no"] in [1.2, 2.2] and \
self.config["use_scene_feats"] and \
self.config["get_scene_targets"] and \
not self.config["use_char_feats"] and \
not self.config["use_srt_feats"] and \
not self.config["get_char_targets"]))
def trigger_training(self):
"""
Triggers the training process. This function is not called within the class.
Wandb is initialized if wandb logging is enabled.
Optimizer, scheduler and criterion are initialized.
A train method is called which trains the model.
"""
if self.config["wandb"]["logging"] and (not self.config["wandb"]["sweeps"]):
wandb.init(project=self.config["wandb"]["project"], entity=self.config["wandb"]["entity"], config=self.config)
wandb.run.name = self.config["model_name"]
optimizer = optim.Adam(self.model.parameters(), lr=self.config["lr"])
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=0.1, patience=5, threshold=0.001)
criterion = nn.BCEWithLogitsLoss(pos_weight=torch.Tensor(self.config["pos_weight"][str(self.train_dataset.top_k)]).to(self.device))
train(epochs=self.epochs, num_labels=self.train_dataset.top_k,
train_dataloader=self.train_dataloader, val_dataloader=self.val_dataloader,
device=self.device, emo2id=self.emo2id, model=self.model, optimizer=optimizer, scheduler=scheduler,
criterion=criterion, pred_thresh=self.config["target_prediction_threshold"], masking=True,
wandb_logging=self.config["wandb"]["logging"], model_name=self.config["model_name"], save_path=Path(self.config["save_path"]))
def fill_model_name(config):
"""
Fills the model name based on the config file.
"""
target_type = {(True, True): "SC", (True, False): "S", (False, True): "C"}
random_frame_selection = {True: "R", False: "nR"}
feat_type = {"emo": 'e', "generic": 'g', "clip": 'c', "resnet50_places": 'r', "resnet50_fer": 'r', "concat": "co", "independent": "in", "mvit_v1": "m"}
srt_feat_type = {True: 'P', False: 'F'}
srt_feat_model = {'roberta': 'r', 'clip': 'c'}
if float(config["model_no"]) in [3.0, 4.0]:
model_no = '_'.join(str(config["model_no"]).split('.'))
model_name = "M{}.L{}.N{}.e{}.t{}.{}S.{}C.{}{}Sr.{}".format(model_no,
config["num_enc_layers"],
config["num_chars"],
len(np.format_float_positional(config["lr"]))-2,
config["top_k"] if not config["use_emotic_mapping"] else 26,
feat_type[config["scene_feat_type"]],
feat_type[config["face_feat_type"]],
feat_type[config["srt_feat_type"]],
srt_feat_type[config["srt_feat_pretrained"]]+srt_feat_model[config["srt_feat_model"]],
config["feat_sampling_rate"])
else:
model_no = '_'.join(str(config["model_no"]).split('.'))
model_name = "M{}.{}.t{}".format(model_no,
feat_type[config["face_feat_type"]],
config["top_k"] if not config["use_emotic_mapping"] else 26)
model_name += "_local" if not config["wandb"]["logging"] else ""
model_name += "_{}".format(config["model_name_suffix"])
return model_name
def get_config():
"""
Loads the config file and updates it with the command line arguments.
The model name is also updated. The config is then converted to a dictionary.
"""
base_conf = OmegaConf.load("config.yaml")
overrides = OmegaConf.from_cli()
updated_conf = OmegaConf.merge(base_conf, overrides)
OmegaConf.update(updated_conf, "model_name", fill_model_name(updated_conf))
return OmegaConf.to_container(updated_conf)
def sweep_agent_manager():
"""
This function is called by wandb agent. It initializes wandb and then calls the trainer class.
Run name is also updated.
"""
wandb.init()
config = dict(wandb.config)
run_name = fill_model_name(config)
wandb.run.name = run_name
config["model_name"] = run_name
obj = trainer(config)
obj.trigger_training()
if __name__ == "__main__":
config = get_config()
if config["wandb"]["sweeps"]:
wandb.agent(sweep_id=config["wandb"]["sweep_id"], function=sweep_agent_manager, count=config["wandb"]["sweep_run_count"])
else:
print("Current config: {}".format(yaml.dump(config)))
save_config(config, Path(config["dumps_path"]), config["model_name"]+"__test_config.yaml")
obj = trainer(config)
obj.trigger_training()