-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy patheigenstrat_data_example.py
149 lines (111 loc) · 5.44 KB
/
eigenstrat_data_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
'''
Example of loading genotype data from eigenstrat file, defining PCA model and estimating scores for samples with missing data.
The example data is derived from:
Human Origins data set
Genomic insights into the origin of farming in the ancient Near East
Lazaridis et.al.
Nature 2016
'''
import numpy as np
from mpca.utils.visualization import connectpoints, get_scores_by_pop, get_plot_style, plot_scores
from mpca.utils.datahandling import remove_values, read_from_EIGENSTRAT
from mpca.estimate.pcamodel import pcamodel
from mpca.estimate.lsq import projection_to_model_plane, trimmed_score_regression, known_data_regression
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error
import seaborn as sns
sns.set()
# 249 samples, chroms 20-22
filebase = "HumanOrigins249_tiny"
# all samples, chroms 16-22
# filebase = "HumanOrigins2067_short"
# Mapping of populations to superpopulations (not part of the original data, may have mislabeled populations or other errors)
pop_superpop_file="data/HO_superpopulations"
missing_val = -1
genotypes, ind_pop_list = read_from_EIGENSTRAT("data/" +filebase + ".eigenstratgeno", "data/" + filebase + ".fam")
n_samples = len(ind_pop_list)
# set all genotypes that are originally missing to 0 for testing purposes
for r in range(genotypes.shape[0]):
genotypes[r,:] = list(map(lambda x: 0 if x == 9.0 else x, genotypes[r,:]))
# Select how many test samples to use.
# PCA will be performed based on the train samples, and scores will be estimated for the test samples.
n_test_samples = 25
test_idx = np.random.choice(n_samples, size=n_test_samples, replace=False)
train_idx = np.arange(n_samples)
train_idx = np.delete(train_idx, test_idx)
# Centered and normalized genotype data of the train and test samples
genotypes_train = genotypes[train_idx]
genotypes_test = genotypes[test_idx]
print("train data: " + str(genotypes_train.shape))
print("test data: " + str(genotypes_test.shape))
scaler = StandardScaler()
scaler.fit(genotypes_train)
genotypes_train = scaler.transform(genotypes_train)
genotypes_test = scaler.transform(genotypes_test)
n_samples = genotypes.shape[0]
n_markers = genotypes.shape[1]
# Individual and population IDs of the train and test samples
ind_pop_list_train = ind_pop_list[train_idx]
ind_pop_list_test = ind_pop_list[test_idx]
pm = pcamodel()
pm.define_PCA_model(genotypes_train)
scores_train = pm.scores
scores_test_true = np.dot(genotypes_test, pm.loadings)
##################### plot train, test and estimated test scores using the PMP method ############
# fraction of genotypes to set to missing
missing_fraction = 0.4
genotypes_sparse = remove_values(genotypes_test, missing_fraction, missing_val)
scores_est = projection_to_model_plane(pm, genotypes_sparse, missing_val=missing_val)
mse = mean_squared_error(scores_test_true, scores_est)
# Plot the train scores
scores_train_by_pop = get_scores_by_pop(scores_train, ind_pop_list_train)
style_dict = get_plot_style(pop_superpop_file, "plots/legend_HO.png", width=1.6, height=1.9, markersize=50, fontsize=6)
plot_scores(scores_train_by_pop, style_dict, pop_superpop_file, markersize=30, figsize=(9,8))
plt.savefig("plots/pca."+filebase+".png", bbox_inches="tight")
# Plot the true and estimated test scores
plt.scatter(scores_test_true[:,0], scores_test_true[:,1], label="true test scores", color="cyan", alpha=0.8, s=50, edgecolors="black")
plt.scatter(scores_est[:,0], scores_est[:,1], label="estimated test scores", color="red", alpha=0.7, s=60, edgecolors="black")
for p in range(len(scores_test_true)):
connectpoints(scores_test_true[p], scores_est[p])
plt.title("mse: {} ".format(mse))
plt.legend()
plt.savefig("plots/estimated_scores_"+filebase+"_"+str(n_test_samples)+"_test_"+str(missing_fraction)+".png", bbox_inches="tight")
plt.close()
##################### test the different methods on various levels of missing genotypes ############
missing_fractions = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
mses_pmp = []
mses_tri = []
mses_tsr = []
mses_kdr = []
for mf in missing_fractions:
genotypes_sparse = remove_values(genotypes_test, mf, missing_val)
# PMP
scores_pmp = projection_to_model_plane(pm, genotypes_sparse, missing_val=missing_val)
mse_pmp = mean_squared_error(scores_test_true, scores_pmp)
mses_pmp.append(mse_pmp)
# TSR and TRI
scores_tsr, scores_tri = trimmed_score_regression(pm, genotypes_train, genotypes_sparse, missing_val=missing_val)
mse_tri = mean_squared_error(scores_test_true, scores_tri)
mse_tsr = mean_squared_error(scores_test_true, scores_tsr)
mses_tri.append(mse_tri)
mses_tsr.append(mse_tsr)
# KDR
scores_kdr = known_data_regression(pm, genotypes_train, genotypes_sparse, missing_val=missing_val)
mse_kdr = mean_squared_error(scores_test_true, scores_kdr)
mses_kdr.append(mse_kdr)
sns.set_style(style="whitegrid", rc=None)
fig,ax = plt.subplots(figsize=(7,6))
plt.grid(b=True, which='major', linewidth=0.5)
plt.grid(b=True, which='minor', linewidth=0.25, linestyle="--")
ax.set_yscale("log", nonposy='clip')
plt.plot(missing_fractions, mses_tri, label="TRI")
plt.plot(missing_fractions, mses_pmp, label="PMP")
plt.plot(missing_fractions, mses_tsr, label="TSR")
plt.plot(missing_fractions, mses_kdr, label="KDR")
plt.title("estimation error of PCA scores from data with missing genotypes")
plt.ylabel("log mean squared error")
plt.xlabel("fraction missing data")
plt.legend()
plt.savefig("plots/errors_"+filebase+"_"+str(n_test_samples)+"_test.png", bbox_inches="tight")
plt.show()