Skip to content

Latest commit

 

History

History

4-hub-spoke-nva-dual-region

Hub and Spoke - Dual Region

Lab: Hs14

Contents

Overview

This terraform code deploys a multi-region Virtual Network (Vnet) hub and spoke topology with dynamic routing using Network Virtual Aplliance (NVA) and Azure Route Server (ARS).

Hub and Spoke (Dual region)

Hub1 has an Azure Route Server (ARS) with BGP session to a Network Virtual Appliance (NVA) using a Cisco-CSR-100V router. The direct spokes Spoke1 and Spoke2 have Vnet peering to Hub1. An isolated spoke (Spoke3) does not have Vnet peering to the hub (Hub1), but is reachable from the hub via Private Link Service.

Hub2 has an ARS with BGP session to an NVA using a Cisco-CSR-100V router. The direct spokes Spoke4 and Spoke5 have Vnet peering to Hub2. An isolated Spoke6 does not have Vnet peering to the Hub2, but is reachable from the hub via Private Link Service.

The hubs are connected together via IPsec VPN overlay and BGP dynamic routing to allow multi-region network reachability.

Branch1 and Branch3 are on-premises networks which are simulated using Vnets. Multi-NIC Cisco-CSR-1000V NVA appliances connect to the Vnet hubs using IPsec VPN connections with dynamic (BGP) routing.

Prerequisites

Ensure you meet all requirements in the prerequisites before proceeding.

Deploy the Lab

  1. Clone the Git Repository for the Labs
git clone https://github.com/kaysalawu/azure-network-terraform.git
  1. Navigate to the lab directory
cd azure-network-terraform/1-hub-and-spoke/4-hub-spoke-nva-dual-region
  1. Run the following terraform commands and type yes at the prompt:
terraform init
terraform plan
terraform apply

Troubleshooting

See the troubleshooting section for tips on how to resolve common issues that may occur during the deployment of the lab.

Testing

Each virtual machine is pre-configured with a shell script to run various types of tests. Serial console access has been configured for all virtual mchines. You can access the serial console of a virtual machine from the Azure portal.

Login to virtual machine Hs14-spoke1-vm via the serial console.

  • username = azureuser
  • password = Password123

Hs14-spoke1-vm

Run the following tests from inside the serial console.

1. Ping IP

This script pings the IP addresses of some test virtual machines and reports reachability and round trip time.

Run the IP ping test

ping-ip

Sample output

azureuser@Hs14-spoke1-vm:~$ ping-ip

 ping ip ...

branch1 - 10.10.0.5 -OK 6.574 ms
hub1    - 10.11.0.5 -OK 4.616 ms
spoke1  - 10.1.0.5 -OK 0.032 ms
spoke2  - 10.2.0.5 -OK 4.738 ms
branch3 - 10.30.0.5 -OK 22.287 ms
hub2    - 10.22.0.5 -OK 21.208 ms
spoke4  - 10.4.0.5 -OK 21.574 ms
spoke5  - 10.5.0.5 -OK 20.790 ms
internet - icanhazip.com -NA

2. Ping DNS

This script pings the DNS name of some test virtual machines and reports reachability and round trip time.

Run the DNS ping test

ping-dns

Sample output

azureuser@Hs14-spoke1-vm:~$ ping-dns

 ping dns ...

vm.branch1.corp - 10.10.0.5 -OK 6.902 ms
vm.hub1.az.corp - 10.11.0.5 -OK 4.253 ms
vm.spoke1.az.corp - 10.1.0.5 -OK 0.029 ms
vm.spoke2.az.corp - 10.2.0.5 -OK 5.066 ms
vm.branch3.corp - 10.30.0.5 -OK 21.902 ms
vm.hub2.az.corp - 10.22.0.5 -OK 20.679 ms
vm.spoke4.az.corp - 10.4.0.5 -OK 21.885 ms
vm.spoke5.az.corp - 10.5.0.5 -OK 21.008 ms
icanhazip.com - 104.18.114.97 -NA

3. Curl DNS

This script uses curl to check reachability of web server (python Flask) on the test virtual machines. It reports HTTP response message, round trip time and IP address.

Run the DNS curl test

curl-dns

Sample output

azureuser@Hs14-spoke1-vm:~$ curl-dns

 curl dns ...

200 (0.039655s) - 10.10.0.5 - vm.branch1.corp
200 (0.032831s) - 10.11.0.5 - vm.hub1.az.corp
200 (0.024300s) - 10.11.4.4 - pep.hub1.az.corp
[ 9308.555585] cloud-init[1568]: 10.1.0.5 - - [17/Sep/2023 15:19:40] "GET / HTTP/1.1" 200 -
200 (0.024380s) - 10.1.0.5 - vm.spoke1.az.corp
200 (0.032727s) - 10.2.0.5 - vm.spoke2.az.corp
000 (2.000988s) -  - vm.spoke3.az.corp
200 (0.070766s) - 10.30.0.5 - vm.branch3.corp
200 (0.069757s) - 10.22.0.5 - vm.hub2.az.corp
200 (0.069787s) - 10.22.4.4 - pep.hub2.az.corp
200 (0.074629s) - 10.4.0.5 - vm.spoke4.az.corp
200 (0.068120s) - 10.5.0.5 - vm.spoke5.az.corp
000 (2.001429s) -  - vm.spoke6.az.corp
200 (0.023326s) - 104.18.115.97 - icanhazip.com

We can see that spoke3 vm.spoke3.az.corp returns a 000 HTTP response code. This is expected as there is no Vnet peering to Spoke3 from Hub1. But Spoke3 web application is reachable via Private Link Service private endpoint pep.hub1.az.corp. The same explanation applies to Spoke6 virtual machine vm.spoke6.az.corp

4. Private Link Service

Test access to Spoke3 application using the private endpoint in Hub1.

curl pep.hub1.az.corp

Sample output

azureuser@Hs14-spoke1-vm:~$ curl pep.hub1.az.corp
{
  "headers": {
    "Accept": "*/*",
    "Host": "pep.hub1.az.corp",
    "User-Agent": "curl/7.68.0"
  },
  "hostname": "Hs14-spoke3-vm",
  "local-ip": "10.3.0.5",
  "remote-ip": "10.3.3.4"
}

Test access to Spoke6 application using the private endpoint in Hub2.

curl pep.hub2.az.corp

Sample output

azureuser@Hs14-spoke1-vm:~$ curl pep.hub2.az.corp
{
  "headers": {
    "Accept": "*/*",
    "Host": "pep.hub2.az.corp",
    "User-Agent": "curl/7.68.0"
  },
  "hostname": "Hs14-spoke6-vm",
  "local-ip": "10.6.0.5",
  "remote-ip": "10.6.3.4"
}

The hostname and local-ip fields belong to the servers running the web application - in this case Spoke3 and Spoke6virtual machines. The remote-ip fields (as seen by the web servers) are the respective IP addresses in the Private Link Service NAT subnets.

5. Network Virtual Appliance (NVA)

  1. Run a tracepath to vm.spoke2.az.corp (10.2.0.5) to observe the traffic flow through the NVA.
tracepath vm.spoke2.az.corp

Sample output

azureuser@Hs14-spoke1-vm:~$ tracepath vm.spoke2.az.corp
 1?: [LOCALHOST]                      pmtu 1500
 1:  10.11.1.9                                             2.452ms
 1:  10.11.1.9                                             2.265ms
 2:  10.2.0.5                                              5.295ms reached
     Resume: pmtu 1500 hops 2 back 2

We can observe the traffic flow from Spoke1 to Spoke2 goes through the NVA in Hub1 (IP address 10.11.1.9) before reaching the destination Spoke2 (10.2.0.5).

  1. Run a tracepath to vm.spoke5.az.corp (10.5.0.5) to observe the traffic flow through the NVA in both hubs.
tracepath vm.spoke5.az.corp

Sample output

azureuser@Hs14-spoke1-vm:~$ tracepath vm.spoke5.az.corp
 1?: [LOCALHOST]                      pmtu 1500
 1:  10.11.1.9                                             2.551ms
 1:  10.11.1.9                                             2.445ms
 2:  10.11.1.9                                             5.484ms pmtu 1446
 2:  10.22.50.1                                           20.987ms
 3:  10.5.0.5                                             21.653ms reached
     Resume: pmtu 1446 hops 3 back 3

We can observe the traffic flow from Spoke1 to Spoke5 as summarized below:

  • traffic flows through the NVA in Hub1 (10.11.1.9)
  • then traverses NVA in Hub2 (10.22.50.1 is the IPsec overlay IP address)
  • then reaches the final destination Spoke5 (10.5.0.5).

Repeat steps 1-5 for all other spoke and branch virtual machines.

6. Onprem Routes

Let's login to the onprem router Hs14-branch1-nva and observe its dynamic routes.

  1. Login to virtual machine Hs14-branch1-nva via the serial console.
  2. Enter username and password
    • username = azureuser
    • password = Password123
  3. Enter the Cisco enable mode
enable
  1. Display the routing table
show ip route

Sample output

Hs14-branch1-nva-vm#show ip route
...
[Truncated for brevity]
...
Gateway of last resort is 10.10.1.1 to network 0.0.0.0

S*    0.0.0.0/0 [1/0] via 10.10.1.1
      10.0.0.0/8 is variably subnetted, 18 subnets, 4 masks
B        10.1.0.0/16 [20/0] via 10.11.7.4, 01:35:19
B        10.2.0.0/16 [20/0] via 10.11.7.4, 01:35:19
B        10.4.0.0/16 [20/0] via 10.11.7.5, 00:58:33
B        10.5.0.0/16 [20/0] via 10.11.7.5, 00:58:33
S        10.10.0.0/24 [1/0] via 10.10.2.1
C        10.10.1.0/24 is directly connected, GigabitEthernet1
L        10.10.1.9/32 is directly connected, GigabitEthernet1
C        10.10.2.0/24 is directly connected, GigabitEthernet2
L        10.10.2.9/32 is directly connected, GigabitEthernet2
C        10.10.10.0/30 is directly connected, Tunnel0
L        10.10.10.1/32 is directly connected, Tunnel0
C        10.10.10.4/30 is directly connected, Tunnel1
L        10.10.10.5/32 is directly connected, Tunnel1
B        10.11.0.0/16 [20/0] via 10.11.7.4, 01:35:19
S        10.11.7.4/32 is directly connected, Tunnel1
S        10.11.7.5/32 is directly connected, Tunnel0
B        10.22.0.0/16 [20/0] via 10.11.7.5, 00:58:33
B        10.30.0.0/24 [20/0] via 10.11.7.5, 00:58:33
      168.63.0.0/32 is subnetted, 1 subnets
S        168.63.129.16 [254/0] via 10.10.1.1
      169.254.0.0/32 is subnetted, 1 subnets
S        169.254.169.254 [254/0] via 10.10.1.1
      192.168.10.0/32 is subnetted, 1 subnets
C        192.168.10.10 is directly connected, Loopback0
  1. Display BGP information
show ip bgp

Sample output

Hs14-branch1-nva-vm#show ip bgp
BGP table version is 9, local router ID is 192.168.10.10
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
              r RIB-failure, S Stale, m multipath, b backup-path, f RT-Filter,
              x best-external, a additional-path, c RIB-compressed,
              t secondary path, L long-lived-stale,
Origin codes: i - IGP, e - EGP, ? - incomplete
RPKI validation codes: V valid, I invalid, N Not found

     Network          Next Hop            Metric LocPrf Weight Path
 *    10.1.0.0/16      10.11.7.5                              0 65515 i
 *>                    10.11.7.4                              0 65515 i
 *    10.2.0.0/16      10.11.7.5                              0 65515 i
 *>                    10.11.7.4                              0 65515 i
 *    10.4.0.0/16      10.11.7.4                              0 65515 65000 65000 i
 *>                    10.11.7.5                              0 65515 65000 65000 i
 *    10.5.0.0/16      10.11.7.4                              0 65515 65000 65000 i
 *>                    10.11.7.5                              0 65515 65000 65000 i
 *>   10.10.0.0/24     10.10.2.1                0         32768 i
 *    10.11.0.0/16     10.11.7.5                              0 65515 i
     Network          Next Hop            Metric LocPrf Weight Path
 *>                    10.11.7.4                              0 65515 i
 *    10.22.0.0/16     10.11.7.4                              0 65515 65000 65000 i
 *>                    10.11.7.5                              0 65515 65000 65000 i
 *    10.30.0.0/24     10.11.7.4                              0 65515 65000 65000 65003 i
 *>                    10.11.7.5                              0 65515 65000 65000 65003 i

Cleanup

  1. Make sure you are in the lab directory
cd azure-network-terraform/1-hub-and-spoke/4-hub-spoke-nva-dual-region
  1. Delete the resource group to remove all resources installed.
    Run the following Azure CLI command:
az group delete -g Hs14RG --no-wait